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ABSTRACT

The possible dc states of a one~dimensional plasma diode are
analyzed. This diode consists of opposing thermionic ion and electron
emitters in parallel-plane geometry. The emitters can have different
temperatures., The assumptions of nonreflecting boundaries and complete
lack of collisions are made, Electrons and ions are assumed to be
generated with half-Maxwellian velocity distributions corresponding to
their respective temperatures.

For the case of nonnegative potential of the jon emitter with
respect to the electron emitter all possible dc states are found. It
is shown that if the continuity of the spatial derivative of the space-
charge function is required in the diode space, then only one self-
consistent dc state is possible for a diode with a given applied
potential across it. This dc state is called the "basic solution.”

Neither Maxwell's equations nor the collisionless, steady-state
Boltzmann equation require the continuity of the derivative of the
space-charge function, If discontinuities in this derivative are
permitted, spatially periodic dc states also become possible solutions
for some diodes. Curves are given for the determination of the possible
presence of periodic solutions in an arbitrary opposite-stream diode.
The characteristics of periodic dc states are computed with similar
numerical methods as used for basic states.

The derivative of the space-charge function does not enter into
the strict dc problem; however, if it is discontinuous then a small
amount of collisions would give rise to large diffusion currents, thus
destroying this discontinuity. Even in a strictly collisionless model
a small rf perturbation would affect the periodic dc solution in a
similar manner through the process of phase mixing. Thus, dc solutions
with discontinuous derivatives of their space-charge functions are
expected (and found) to be unstable.

The stability of the dc states is examined by simulating the
motions of the electrons and ions on a computer. The computer model
showed that under time-varying conditions the basic solution is formed

and that it is in qualitative and quantitative agreement with the
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results of the forementioned dc calculations., The fluctuations present
in the model are due only to shot-noise effects. When the periodic
solution is set up in the diode model initially, it changes rapidly
into the basic solution, showing that the discontinuous derivative of
the space-charge function makes this dc solution highly unstable.
Characteristics of this computer diode and the step-by-step transforma-
tion of the periodic state are shown.

An experimental model of the opposite-stream diode is constructed
with a solid-state, thermionic, lithium-ion emitter and a barium-oxide-
coated electron emitter, The current vs voltage characteristics of
this diode agree with the theoretical values predicted for the basic
solution, if the contact potential of the emitters is taken into account,
The contact potential is determined by comparing the experimental data
with the predicted current values that should flow theoretically in

the diode when the applied potential is zero.
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I. INTRODUCTION

Direct-current theories for charged particle flow between two plane
electrodes have been developing for over 60 years. The development
began with the formulation of Child's law, which was the direct conse-
quence of the law of the electrons' motion in a steady electric field
and of Poisson's equation. This simple law of single-velocity electrons
was the starting point of extensive analysis of more complicated situa-
tions,

The addition of ions to the simple electron diode was made, retain-
ing the assumption of single-velocity particles. Langmuir [Ref. 1] and
later Miiller-Liibeck [Ref. 2] made extensive calculations of the charac-
teristics of a parallel-plane diode consisting of cold, opposed electron
and ion emitters. In their analysis both kinds of particles were emitted
with zero velocity while assuming unlimited current densities of the
emitters (space—charge—limited operation). The Langmuir and Miiller-
Liibeck analyses showed a 3/2—power law between voltage and current such
as that of Child's law. However, the factor of proportionality (i.e.,
perveance) of this electron-ion diode was found to be 1.86 times larger
fhan the perveance factor of the simple electron diode.

Temperature effects must be taken into consideration for physically
realizable diodes. The theory of a thermionic electron diode has been
worked out by many authors. An excellent summary of this work can be
found in Langmuir and Compton's paper [Ref. 3], and highly accurate
numerical results for their work were calculated by Kleynen [Ref. 4].

In the development of the theory of the double sheath, Langmuir
went a step further when he considered hot electrons and cold ions
emitted from the same plane in a paraiiel-plane dicde. He gave a de-
tailed discussion of this system, including periodic types of solutions
[Ref. 5].

In the last few years several papers have dealt with one or more
aspects of plasma diodes; most of them have included temperature effects
of the particles. A theory of dc states with thermionic emitters was

presented by Auer [Ref. 6], and later by Mclntyre [Ref. 7]. This theory
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dealt with hot-ion and hot-electron emission from the same plane and
considered most of the possible dc cases--though McIntyre did not include
the possibility of periodic solutions shown by Auer.

A paper by McIntyre [Ref. 8] deals with the hot three-stream diode
which has electron and ion emission from the cathode and electron
emission from the anode. The two emitting planes have different tem-
peratures., He considers ten important dc cases, shows transitions
between these, and discusses periodic types of solutions. Some of these
dc states would coincide with the ones presented in this paper if elec-
tron emission from the cathode of his model could be neglected. Aside
from the fact that there is no simple way of neglecting this electron
emission, McIntyre's aims were different from ours. Consequently, we
arrived at different conclusions.

Further studies aimed at specialized applications may be mentioned,
e.g., the work of Auer and Hurwitz [Ref. 9] or the paper by Eichenbaum
and Hernquist [Ref. 10].

The most general case of a parallel-plane plate, thermionic diode
is the "four-stream" diode, which allows for both ion and electron
emission from both planes and for different emission temperatures at
these planes. The number of independent parameters for this problem is
six. To work out a complete theory, which includes all possible dc
solutions for this general case, would be too laborious and of doubtful
value.

Since our first aim was to find a complete theory, the simpler model
of the opposite-stream diode was selected and is shown schematically on
Fig. 1. This model has the advantage that it could be approximated
fairly well by an experimental device and yet it is simple enough for a
tractable theoretical analysis. If allowance is made for different
temperatures of the emitters, we find that four independent parameters
are sufficient to determine the problem (see Sec. IIIB). The two-
stream diode is a good approximation to a real diode only for positive
voltages on the ion emitter., At decelerating potentials, electron
emission from the ion emitter and ion emission from a possible ion
surface layer at the electron emitter could become important, hence the

general four-stream diode has to be studied.
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FIG, 1. MODEL OF THE OPPOSITE-STREAM
DIODE. The symbols f(ug,) and f(uio)
represent the velocity-distribution
functions of the emitted electrons and
ions respectively. Both functions are
of half-Maxwellian types, with electron
temperature Te and ion temperature Ti'

Once the dc states are known, their stability can be determined by
simulating on a computer the model of our one-dimensional plasma diode.
We have developed a complete dc theory for the opposite-stream diode,
therefore we can determine the stability of all the possible dc states
of this device by using the forementioned computer model. To do this,
we need to calculate the self-consistent dc states of our model by
numerical integrations. A procedure for these calculations is presented
in Chapters III and IV,

There is a further advantage in determining the exact dc charac-
teristics of our diode. The obtained theoretical data can be compared
with measurements made on an experimental opposite-stream diode. The
construction of this diode became possible when a thermionic, lithium-ion
emitter was developed in our laboratory. The experiment is described
in Chapter VII.

The following representative case of an opposite-stream diode was
chosen to demonstrate the theoretical results. (This example will be
used throughout the dc theory whenever it becomes necessary to demonstrate
results or procedures for a typical diode.) This representative diode

has the following construction:
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Electron emitter: Temperature: 1200 °K 9
Saturation current density: 0.1 amp/cm

Ion emitter: Temperature: 1400 °K 5
Saturation current density: 1 ma/cm

Ions: Lithium

Separation of emitters: 0.2 cm

In Fig. 2 the predicted voltage-current characteristic of this
particular diode is compared to that of other diode models. The "cold
electron diode" exhibits Child's law. The "cold electron + ion diode"
also has a 3/2—power law between current and voltage.

We also show the V-I characteristic of the temperature-corrected
pure electron diode. Although the characteristics of this diode can be
determined from Kleynen's tables [Ref. 4], the numerical procedure
described in this report was used to determine both this curve and the
V-1 characteristics of the opposite-stream temperature-corrected diode.
The curves are shown on a "perveance diagram" with 3/2~power scale for
voltage, so that the curves representing the two diodes with single-
velocity particles appear as straight lines.

We will also examine the stability of the found dc states by simu-
lating this diode on a computer, and finally compare the results to the
characteristics of an experimental opposite-stream diode which has the

operating parameters listed above.
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11, CHARGED PARTICLES THERMIONICALLY EMITTED
INTO A DC POTENTIAL FIELD

A. TFORMULATION OF THE PROBLEM

As a first step we want to calculate the space-charge contribution
of one kind of charged particle to the total space charge when these
particles are emitted thermionically into an evacuated space. This
contribution is given by an integral of the particles' velocity-
distribution function; therefore we solve an equivalent problem by
finding the velocity distribution of the emitted particles as a function
of potential. We use parallel-plane geometry and assume that some dc
potential as some function of distance is set up between the two end-
planes.

For convenience, the emission of these particles is taken to occur
at the left plane with a given velocity distribution (see Fig. 3).

Both planes absorb incoming particles. Since we neglect any type of
collision in the diodes, it is clear that once the dc state is set up
the velocity-distribution function of the emitted stream has to satisfy

the collisionless, static Boltzmann's equation with boundary conditions

Potential
Velocity
distribution of §§f(u)
emn{ted u VZ=V(d)
particles " X
Vi =V(0)
Distance
Emitter Collector™!

d = separation distance

FIG. 3. THE SYSTEM FOR CALCULATING THE SPACE-CHARGE
CONTRIBUTIONS OF ONE KIND OF PARTICLE. The parti-
cles are emitted at the left plane with a velocity-
distribution function f(u). The potential
distribution in the diode is arbitrary.
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given at the two planes. As stated pefore, no reflection occurs at the
boundaries, therefore the distribution function of the particles must
be asymmetrical: there will be velocity classes which do not appear in
the distribution function.

The form of the velocity-distribution function of the emitted
particles will be determined in a general manner. In the next chapter
we will use the results of the following analysis for solving our

opposite-stream diode problem,

B. THE INTRODUCTION OF SYMBOLIC FUNCTIONS

There are several ways to arrive at the expressions of the contri-
butions to the space charge of the particles, which are necessary to
the numerical calculation of the problem. The commonly used method is
to follow velocity classes of the particles and separate them into those
which return to their respective emitting planes and those which escape
at the opposite side (see for example Ref. 5). This procedure could be
quite laborious for the general four-stream diode with a complicated
potential function, and not much general information could be extracted
from it before solving the problem with Poisson's equation simultane-
ously, Also, it is not clear that the solutions arrived at by this
method are solutions to the collisionless Boltzmann equation. A
different approach will be used here.

The emitted particles have a velocity-distribution function
f(u){o < u < +o], a charge "q," and a mass "m." (See Fig. 3.) Our
first observation is that conservation of energy sets up a restriction
on the velocity-distribution function of the particles. At every point
in the diode where returned particles are present, the equality
f(u) = f(-u) must hold under our assumptions. On the other hand, as
mentioned earlier, one cannot exclude the possibility of missing veloc-
ity classes. 1In order to account for this possibility, the general
form of the distribution function of the particles inside the diode
could be represented by an even function of velocity multiplied by
some kind of "cutoff" function. The latter has the property that it

11 n

is "one" in some intervals and "zero" elsewhere (Fig. 4). It is

guite evident that we are able to use here the powerful mathematical
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f(u)

Even function of u
fy (u)

f(u)

Cut-off function of u
f,(u)

Uy

Uz Us

General form of distribution function
£, (u)- o (u)

Y

uz Uz

FIG. 4. THE FORM OF THE VELOCITY-DISTRIBUTION FUNCTION
OF THE EMITTED PARTICLES UNDER COLLISIONLESS, DC
CONDITIONS FOR A COMPLICATED DIODE. The parameters

u and

are functions of the position. For

u_, o u
tﬁe opposite—s%ream diode, u, = u_, = 0; but u, can

be positive or negative depending on x.

tool of symbolic functions:

1

the Dirac delta function ®(x) and its

integral--the Heaviside unit function [Ref. 11]. The latter is

denoted by h(u), with the known property:

=
—
c
~
1l

=
—~

c
~r

1]

These symbolic functions

the range -» < u < +», This

SEL-64-012

0 for u <o
. (1)

1 for u> 0

are defined only through an integral over

definition agrees with the physics of




the problem since all physical quantities (space charge, electric field,

etc.) are defined by integrals of the distribution functioms.

C. THE VELOCITY~-DISTRIBUTION FUNCTION OF THE EMITTED PARTICLES

Now that we know the general form of the distribution function in
its dependence on velocity, we are ready to substitute it into the time-

independent, collisionless Boltzmann equation, which has the form

o 2x) 4 gy Alwx) (2)

where E(x) 1is the dc electric field defined by E(x) = -dV(X)/dx~

The diode space can be divided into a finite number of regions,
in each of which the potential V(x) is a monotonic function of
distance. For any one of these regions V(x) is a unique function;
therefore one can write the velocity-distribution function as a function
of u and V instead of u and x. To do this, the following

relation is used:

af(g},{x) =5fa(3,v) %= _E(x) af(u\,/v) (3)

Let us introduce two normalized quantities. We define a normalized

potential:

1 (0 & o (V) - V) (4)

where Tn and Vn are the temperature and the potential of the emitter

respectively, k is Boltzmann's constant, and qn is the charge of

species n. The subscript "n" distinguishes between species. Note

that ﬂn(x) has the sign of potential energy of the particles regard-
less of whether they are ions or electrons,

This normalization procedure refers to one stream only. The
subseript n is used here to show this fact. In Chapter III we will

refer to the different normalizations used for ions and electrons by
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ni’ ne; and later on will introduce a uniform normalization procedure

for both streams [see Eq. (26)]. We normalize velocity also:

O
Vo = 2an Y (5)

There will be a corresponding change in the scale of f(vn,ﬂn)
00
because of the condition d =
qn L” f(vn,nn) Vo pn(nn) where pn(nn)

is the space-charge density of the particles. This condition will be
satisfied by the choice of the constant of proportionality of f(vn,ﬂn)
[see Eq. (14)]. Substituting Egqs. (3), (4), and (5) into Eq. (2) gives

de(v 1) Bty )

n n

vy RE) - dv =0 (6)

n n

The solution of this first-order, partial-differential equation is
F(vn2 + nn), which represents an arbitrary continuous function of its
argument., This result gives the even-function part of the solution
which we were looking for., We still have to incorporate our cutoff
function into the solution. We take the functional form of f(vn,nn)
to be the product of an even function of v F(vn2 + nn> multiplied

by the cutoff function h[v (nn)] [see Eq. (7)].

+ Vv
n no

£ ) = nlv v v (1)1 R 2+ ) (7)

We proceed to find the unknown function vno(nn) that satisfies the
differential equation. By substituting Eq. (7) into Eq. (6), the

. 2 .
terms containing F(vn + nn) cancel and the following expression remains:

dvno(nn)
no' n’ _ =0
olv, +v ()] |2v, a 1 (8)

SEL-64-012 - 10 -




In symbolic representation ®(u - uo) f(u) = f(uo), By using
this relation, the differential equation for vno(nn) is determined

from Eq. (8).

v Ly (n)=-1 (9)

After integrating Eq. (9), the form of vno(nn) becomes:

voo(n) = £/1 = (10)

where nno is a constant,

Looking for other forms of the velocity-distribution function of
the particles, one can prove that the function F(vn2 + nn) itself does
not have to be continuous., It can contain a step function of the form

2 .
h[vn - (nnr— nn)], where TS Mo and N, isa local extremum

in the diode. 1In the opposite-stream diode this form never appears,
but for the sake of generality, this function is included here. With
the forms mentioned, all the possible forms of velocity-distribution
functions have been exhausted for any one of the streams in a one-
dimensional plasma diode. We have assumed nonreflecting boundaries,
collisionless flow, and particle emission at one of the boundary planes
only., For these conditions, any one stream can have only three basic

forms of the velocity-distribution function. These are:

2
1. f(v ) =nhlv -/7 =7 1FF "+ )

11
=2
—

<
+
=
|
-3
—
|
—
<

2. £(v )

} _ .92 .
- 1 F(v,” +n)

3. f(Vn’nn) h[Vn + T]n N T]nr] h[Vn +\/nno n

(11)
The constant nno is the same throughout the diode space, but an
is a constant only in an interval. At both ends of this interval
ﬂn must be equal to nnr in order to insure continuity of the space

charge in the diode.
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We can observe that in any one of the monotonic regions the distri-
bution function f(vn,nn) depends only on the particles' total energy
(vz + W) and on the direction of the velocity of the particles (in the
sense that one must know the direction of their motion in order to tell

about the cutoff of their distribution function).
D. CHOICE OF DISTRIBUTION-FUNCTION FORMS

It can be seen already that it was an advantage to approach the
problem with the help of symbolic functions, Even in the most general
case one could narrow the number of possible forms of the velocity-
distribution functions to three. Unfortunately, the number of possible
combinations of four streams with three different forms of distribution
functions is 81, still too large a number to handle without finding
conditions to rule out some combinations of these forms. Our problem
is simplified since the two-stream diode does not allow the third form
in Eq. (11).

Note that the first two forms appearing in Eq. (11) differ only by
a sign. Since it is necessary to use only these two forms of the distri-
bﬁtion function, we will distinguish between them by the superscripts

(+) and (—). Using this notation we can write:

0,0, = a2 T e ) (12)
Our task is to determine the signs applicable for the streams for all
the regions in the diode. We know that po(x), the space-charge density
function of the stream, has to be continuous in space. This condition
requires that the velocity-distribution function cannot be changed from
one form to another at an arbitrary point in the diode. We can change
form 1 of Eq. (11) to form 2 only at the point where nn =1_ ; and

no

form 2 to form 3 only where nn = nnr' In our case when we do not have

to make the latter change, the points where nn = nno will always be at
the end points of the monotonic regions of nn(x). If a change in the
form of f(vn,nn) is not made, then p(x) will be automatically

continuous.
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To choose between the two forms, one observes that nn is always
less than or equal to qno (see Fig. 5). The immediate consequence is
that returning particles can be present only between the emitting plane
and the plane where nn = nno' In this region, therefore, one has to
use the form with the (+) before the square root. Everywhere else the
first form is applicable (see Fig. 5a). This assignment of the forms of
the distribution functions has to be made separately for each stream,

One must remember that the normalization factor in Eq. (11) contains

Normalized Potential

L ()
~ :-———— ) ———
Nof--:
[
! Distance
1 > (x)
Emitter Collector
a. The basic solution
Normalized Potential
 (n)
~ r—— fly) ———
K 2 |
|
|
} _Distance
\\‘// \\.// \\ ~ {x)
{
Emitter Collector

b. The periodic solution

FIG, 5., THE CHOICE OF THE FORM OF THE VELOCITY-
DISTRIBUTION FUNCTION OF ONE KIND OF EMITTED
PARTICLE IN THE OPPOSITE-STREAM DIODE. The
potential and the velocity are normalized with
respect to the kind of particles emitted. The
choice of the form is shown for the basic and
the periodic solutions.
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the sign of the charge of the particles and therefore nno will repre-
sent the most negative potential in the diode for the electrons, and
the most positive potential for the ions,

It has been assumed until now that the normalized potential func-
tion ﬂn(x) takes up the value Mo only once in the diode. If this
is true for both ions and electrons, we call the solution "basic." Let
us assume th he dc potential function takes the value ”no more
than once in the diode, or to be more specific, that it is periodic in
space (see Fig. Sb). The first extremum will still act as a potential
barrier, but the other points where nn = qno will have no such role
because there could be no returning particles of this stream where these
extrema are, Following this argument with the choice of the form of
the distribution function, it is seen that f(vn,nn) will change from
f+( ) to f-( ) at the first extremum but will not change afterward.
This difference between the first extremum and succeeding ones implies
directly the important difference between basic and periodic types of
solutions. Boltzmann's equation can be satisfied by requiring the
continuity of the space charge as a function of distance. Since Eq. (6)
is a first-order differential equation, we cannot set an arbitrary
value for dp/dx, and we cannot even enforce continuity of dp/dx if
the boundary values of the equation are given. This derivative is
determined by the equation and the boundary conditions. The following
analysis will show that the continuity of dp/dx depends directly on
this change of the form of the distribution function at the extremum
point,

Now that we know the form of the velocity distribution of the
particles in the diode, we can calculate their contribution to the space
charge with a simple integration pn(nn) =q, f;z f(vn,nn)dvn. This
final step is postponed to the next chapter, which deals with the

opposite-stream diode explicity.
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III. THE BASIC SOLUTION

Now that we are equipped with the expressions for the velocity
distributions of the emitted streams, these results can be applied to
the two-stream diode. It has already been mentioned that the opposite
two-stream diode has physical meaning only when there is an accelerat-
ing voltage applied on the diode or when the temperature difference of
the two emitting planes is very large. We arrived at this conclusion
from the Second Law of Thermodynamics since we know that when there is
no potential difference across the diode and no temperature difference
between the planes, no current can flow. This condition could be satis-

fied only with the general four-stream diode.

A, THE FORMAL SOLUTION

As shown in the preceding chapter, the distribution functions of
the streams can be expressed conveniently with symbolic functions,
Since thermionic emission is assumed, the emitted particles will have
half-Maxwellian velocity distributions at the plane nn = 0. So the

general form of the distribution function will be:

+

£7(v ,n ) =chlv £ /7 7= ] exp (-vn2 -n,) (13)

where Cn is a constant, The normalization for the two streams will
be different, but the functional form of their distribution functions
will be given by Eq. (13). The Constant Cn is related to the satura-~-

tion current of the emitter, but instead of using current density it is

more convenient to define equivalent number densities for both streams by

s M

e

where Nn is the number density of the full-Maxwellian distribution at

(14)

C

the source. With this choice the ratio of electron-to-ion masses in the
equations is eliminated, The relation between the experimentally
measured, saturation-current densities and the number densities defined

above is given by
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kT

n
Jn a qun 2:rtmn (15)

where the subscript denotes either ions or electrons, One can go still
further in this general manner (applicable for more than two streams)
by calculating the space-charge contribution of one such stream as a

function of the normalized potential:

[ee]
P (n) = qn/.f(vnﬂl)dv
-0O0
qun “ 2
= + /M= - -
- :L hv & /0 =1 ] exp ( v n)dv (186)

Equation (16) can be integrated by introducing the following functions:

F (1) = exp (1) (1.0 % erf V1) (17)

where

2
erf (x) =-E— j; e-t dt (18)

Using Eq. (17) in Egq. (16), the space charge due to the two streams is

found to be:

exp (- ) Fr(n__ -n) (19)

exp (-1, ) F(n, - n;) (20)

©
=
SN
I
e

In our case the total space charge will be just the algebraic sum of

Eq. (19) and Eq. (20).
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. . 2 2
Using Poisson's equation, d V/dx = = p/eo, one can integrate once

to obtain
2 2 2
E°(V) = - e—jpi(ﬂi)dV - g‘j Po(ny) av
0 0
where E(V) is the electric field.

The stress balance for our model is expressed by Eq. (21).

+
functions F (1) are integrable:

_[Fi(n)dn = ¢*(n) = F ()% 21

The normalization for the two streams, given by Eq. (4), is

N, = —=2f (v, -V)

(21)

The

(22)

(23)

where Vi e is the potential of the ion and electron emitters respec-

?

tively. This reduces Eq. (21) to

k +
V) = gg N.T. exp (-n, ) G (ny, - ny)

+ NT exp (-n ) & - + tant
e e eo’ G (neo ﬂe) constan

(24)

where the subscripts refer to the different normalization factors of the

two streams.

The problem has now been reduced to a quadrature which gives the

separation distance as the function of potential:

v

_ av
= - ];1 (2(v)) /2

(25)
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Equation (25) is a formal solution only, since we have to decide

+ -
where to use G (ﬂ) or G (ﬂ). For this we would have to know the

form of the potential function in the diode (nio’ neo

But how could we ensure that for an assumed potential function we could

are not given).

adjust the arbitrary constants in Eq. (24) in such a way that the total
integral will give the separation distance of the diode? The constants
are not completely arbitrary since E2(V) cannot be negative in the
diode space.

Fortunately, the choice of the form of the potential function for
the two-stream diode is simplified. We will show shortly that only four

basic forms could be present.

B. NORMALIZATION FOR THE TWO-STREAM DIODE

At this point it is convenient to introduce a general normalization
procedure that takes both streams into account. When one of the
saturation-current densities becomes zero, the normalization should be
the same as in Eq. (4). This suggests the definition of the following

quantities:

Number density: N = Ni + Ne
= A
Temperature: T =
(26)
= A
Debye length: A=

For convenience we take the potential to be zero at the electron
emitter and define the normalized potential as: 71 = (e/kT)V. If we
call the most positive potential in the diode ﬂM and the most negative
nm' these will be related to 71 _, nio which were defined in the preced-

eo
ing section as follows:

eo

=
I}
ol
=

N, = Ti (y = 1y) (27)
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where nz = (e/ki")V2 and V2 is the true potential difference across the
diode in volts. The distance measured from the electron emitter can be

normalized by the defined Debye length of the diode:

>

X (28)
A

Even though they are not independent, four characteristic constants

for the problem are defined as follows:

np>
(0]
[0}

np
[=?
[

(29)

npe

There are two identities between these four quantities:

H a = 0
;o op +raB =1 (30)
Therefore only two of the four are independent, and all four can be

calculated from two independent ratios of the physical data of the diode.

These ratios are

Q
I
ul [
n
- o
al =]
o
™
I

(31)
The relations between ae’ Be’ ai, Bi and &,B are:

o - aNp \ 5 1+adp )
© 1+ap € s+avp

(32)
a. = 1 1 +(XJ?;

1+ a~f§ i 1+ @

VB
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For easier identification ¢y is used for the arbitrary constant
of Ez(n). If the quantities defined in Eq. (32) are used, the normalized

electric field will have the form

2 a2 +
) = () =0y e (8,0 - 1,01 68, (- )]

+
Q
0]
ol
(o]
~—~
(V3]
=
s
[»)]
>
P
=3
A
N
-3
+
bl
—~
)
%
p———g

In the normalized form the space-charge function is expressed by the

relation

O[iBi +
p(n) = == exp [, (ny = 71,01 FB (1, - 1)]

ap
-5 e (B, 1) Fi[Be(ﬂ - )] (34)

And then the formal solution of the problem is

q T
tE(n) = jg Eé§z§§¥I7§ (35)

C. FOUR TYPES OF THE BASIC SOLUTION

Our next task is to prove that only four different types of the
potential function can exist in our diode.

1. Type D Solution

First, we assume that an arbitrary dc potential function of the
basic type is present in the diode. Let us take the case when nM > nz,
nm <O (see Fig. 6). It was shown earlier that returning particles can
be present only between the current-limiting extremum and the emitter.
This is true for both streams separately. If the potential minimum is
near the electron emitter and the maximum near the ion emitter (see
Fig, 6), there will be no returning particles of either kind in the
region My <0<y (region II). 1In the regions near the emitters,
returning particles of only one kind are present, Consequently, there

are no regions in the diode where both kinds of particles are traveling
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in both directions. This means that the third type of the velocity-
distribution functions [Eq. (11)] cannot apply for either stream when

the assumed potential function is present. The other two types, f+(v)
and f (v), can be assigned to the streams by following the discussion

in the preceding chapter. This assignment will result in a monotonically
increasing, space-charge function in the whole diode space. Since space
charge is a monotonic function of distance in the diode, the potential
function has to be monotonic in the three separate regions, and we have
determined the shape of the potential function, This potential is

denoted as the type D solution,

Y,

Mup-— =t e —
| REGIONS !
| | 2

1, O |

| | .
! | e
| |

. TYPE D |

Nm< O s 0 D= O
M’ N e > e
U 4\17
REGIONS 7 REGION
2 1
>
Tim }
TYPE B TYPE A TYPE C
ELECTRON RICH ION RICH

FIG. 6. THE FOUR BASIC TYPES OF POTENTIAL FUNCTION IN THE
OPPOSITE-STREAM DIODE. The space-charge function, as a
function, of potential, is expressed differently in the
three different regions, but it is continuous in the diode.
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The foregoing analysis assumes that the potential maximum is
near the ion emitter and the minimum is near the electron emitter., This
is the only possible form of the potential function when nm < 0, ﬂM > nz.
If the positions of these extrema are interchanged, returning particles
of both kinds will be in the middle of the diode. This interchange, how-
ever, is not possible. Looking at the second derivative of the potential
function after interchanging the extrema, we get the condition that
o(ny,) < pli_

charge functions for such a potential distribution, we get p(nM) > p(ﬂm)

). Substituting the values 1 = qM, N o= into the space-
m

if nM > nm. Since the last statement is always true, this gives a

contradiction.

2. Type B and Type C Solutions

When only one of the extremum points is inside the diode, only
one kind of particle is returned in the whole diode space. This happens
when either nm =0 (type C) or HM = ﬂz (type B). Using a similar
argument for these potential functions as was used for the type D case,
we can show that the potential functions will be monotonic in the two

regions for both type B and type C solutions (see Fig. 6).

3. Type A Solution

It is also possible that both extremum points are at the
boundaries. This means that nm = 0 and nM = ﬂz and that there are
no returning particles of either kind in the diode. The function F_(n)
has to be used for both streams in their respective space-charge formula
[see Egqs. (19) and (20)] and since there is only one region, the poten-

tial is monotonic in the whole diode space.

D, THE COMPLETE SOLUTION

With the four types of potential functions, all possible basic-
solution types have been covered. It is still necessary to show how
one can find the type of potential function that is applicable for a
diode with given boundary values, and how one can calculate the

characteristics of the device.
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The four basic types of the potential function are shown on Fig. 6.
Three regions can be distinguished on these diagrams, Region I is
between the electron emitter plane and the plane where 1 = nm' Region 11
extends for the potential values nm <1< nM. Region III is near the
ion emitter where nM >n 2 nz. Looking at our diode from this point of
view, we can consider all four types as type D (see Fig. 6). Types A,

B, and C are only degenerate cases of type D. Degeneracy occurs when the
lengths of region I or region 111, or both, become zero. Mathematically
this yields to & formula valid for all possible basic solutions. Equa-

tion (35) now becomes:

]
m an M an 2 an
§2=-f —————+[] -—————-—]n ————2—-— (36)
M 8III (ﬂ)

where nm <0, nM b nz. Using the procedure outlined in the preceding

section, 812 (n), 8112(n), 81112(n) can be given explicitly as
e2m)=qa, exp [, (n, -1.)] GIB.(n, - 1) W
I B s i vim T2 iV

+a_exp (B 1) G'+[t3e (n-mn)]+ 9

€ () =a, exp [, (n, - ny)] 6 [B,(ny - )]

B (37)
+a_exm (B_n ) 6B, (n-1)]+7
SIIIZ(H) =0, exp [—Bi (UM - ﬂz)] G+[Bi(nM - 1))
+o_exp (B n )6 g, (n-1))+y
/
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Equation (36) gives the total separation distance 52. To evaluate

the integrals, one must know the boundary values &, B, n2 of the

problem and the three parameters 7 nm’ v. For convenience, we will

M’
call the total potential drop in the diode, nT = nM - nm. Ordinarily
§2 is also a given quantity; therefore our task is to set the values

of the three parameters 1 nm’ and 7 such that the total separation

M!
distance given by Eq. (36) be the desired diode separation. Fortunately

this task is simplified by the following relations:

l, For the type A case, nm = 0, nM = nz, and only ¥ 1is a
parameter. The constant ¢ could be any large positive
number, and as ¢ —> +%, §2 approaches zero. On the other
hand, we cannot set v arbitrarily large when negative,
because at some point & z(n) would become negative. Hence

II

for a given set of , B, 7 if we change vy, & will

2’ 2

cover some range O < §2 < EA . This éA will be the
max max

separation length of a potential function for which the

electric field becomes zero at one of the emitter planes.

We call this case a transition case,

2, Types B and C are mutually exclusive, Depending on the
values of &, B, and nz, either type B (electron-rich
case) or type C (ion—rich case) can exist in the diode.

The conditions are:

Qy [G_(Bi ﬂz) - 1] < 1.0 (electron-rich case)

38
o, [G-(Be nz) - 1] > 1.0 (ion-rich case) (38)

When the expression is equal to one, we have a unique
situation., In this case type B or C cannot be present
in the diode since type A changes to type D directly;
the electric field becomes zero at both emitters at
the same time., For B or C types, ﬂT > “2' Once nT
is set, all three parameters can be calculated because

of the condition that the electric field has to be
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zero at the extremum. The case where qT = nz corresponds
to the transition case mentioned, and hence the separation

distance for this case is , which would be a transi-

gA
max

tion from A to B (gAB) or from A to C ) depending

(EAC
on whether it is an electron-rich or an ion-rich case,.

(See Table 1 for transition cases.) Upon increasing

il will increase monotonically. Another transition

T! gz

case will occur if we increase nT when neither electron

nor ion emission is zero. In this case the electric

field becomes zero at the boundary plane where the extremum

has not been formed yet. Transition thus occurs from

type B or C to type D. The length associated with this

transiti . .

ransition is gBD or gCD

is called §D because it is the minimum separation
min

length for the D case when &, B, and nz are given,

For both cases, this length

3. For type D, ﬂT = nM - qm and nM > nz, nm < 0. If nT
increases, §2 increases monotonically so that with

increasing nT we could set & as large as we please,

2
From the above observations we can construct the complete basic

solution. Experimentally &, B8, Wz, and §2 are given, First we have

to decide which type of solution is applicable for this set of boundary

values. To do this, we calculate the transition lengths gA and
max

3 . We set ¢ > §2 corresponding to the emission of one kind

D . D .
min min
of particle only.

The term § can be calculated by finding 9 for the transition

A
max

case A-B or A-C from the formulas:

—— — . ~ fa -\
Electron-Rich Case (A-B)

Ion-Rich Case (A-C)

y=-oa_ 6 (p_n,) - (40)
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TABLE 1. RELATIONS GOVERNING THE TRANSITION CASES OF THE
OPPOSITE-STREAM DIODE

Transition|Potential| Required Equations Determining the Three
Type Form Condition Parameters
n =0
Y 7, m
A-B > |Electron~-(7_ = 7,
{ [* |rich " “

Y = -a-9.G (B;n,)

7 m
1’2
A-C ; Ion-rich nM = n2

G (B n,)-1
n.=n, + 1 log <f§ et >

a ‘Z j_

T2 B g 6 (Bymp)-1

Y] " (Solved by Iteration)

2
B-D t - = -

7 E}ec ron nm nz nT

m rich
= T

Y = -a, exp {ﬂeﬂm}G—(ﬁe”T)_ai

1 ay G_(ﬁiﬂT)‘l
7IT = 7]2 + B_ log <T G_iﬂele -1

1 (=]

7 T (Solved by Iteration)

3

C-D Ion-rich [(n =0

™
=]

nM = ﬂT

Y = -a exp {Bi(n2-nM)} G_(BinT)-ae

Setting UM = nz, ﬂm = 0, and knowing the calculated value of 9 from

EA . Now if §2 < §A , we know that the type A
max max
potential function is applicable.

Eq. (36), we get
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The term gD can be calculated by the conditions that the
min
electric field has to be zero at two points--one of which is at a boundary
plane, Again we have to distinguish between electron-rich and ion-rich
cases:

Electron-Rich Case (B—D)

By iteration nT can be found from the following equation:

( ) -
Ny = My é: log ;f z (Zj ::) - 1 (41)
then
UIREL PR
Ty = Mg (42)

y=-=_exp (B N )G (B, np) -y

Ion-Rich Case (C-D)

Similarly, the following equation is solved by iteration:

a, 6 (B ng) -1

Mo = N, + =— log | == (43)
TC 27 B, U G (B, M) - 1
then
n_=0
Iy = O (44)

y =<, exp [B; (n, -1 G (B np) -y

Knowing the set of parameters nM' nm, and 7 and the constants &, B,

and 1,, Eq. (36) again can be evaluated, resulting in &, - If
min
3

> & , we know that the type D potential function is applicable for

2 D

min
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our diode, If §A < Ez < §D , then depending on whether we have an

max min
electron-rich or an ion-rich case, type B or type C potential has to be

used respectively.

With the described procedure we can determine for any given set of
boundary values, i.e., &, B, nz, and 22, which potential form is appli-
cable. We now must determine the values of the three parameters such
that if they are substituted into Eq. (36), the resulting integral
expression gives the desired separation distance.

For the type A case we have to change only % and hence can get a
correspondence between the parameter 7y and the separation distance
calculated by Eq. (36). Some kind of interpolating method then could
give v, which corresponds to the given separation length.

For the others cases, 1 is changing, and the correspondence is

T

set up between 1 and the separation length calculated by Eq. (36).

T
The only slight complication is that we have to calculate the three
parameters from ﬂT and from conditions on the electric field at the
extremum points. Table 2 presents these relations for all four cases in
a tabulated form,

In all cases it was found that the separation distance was a unique
function of the chosen parameter (7 or nT) and that by changing these
parameters this distance can be varied continuously from zero to any
desired value,

We have written a BALGOL* program which performs all numerical and
logical procedures automatically. A detailed analysis of this program
can be found in Appendixes A and B.

For demonstrations, we have calculated the separation distance as a
function of the parameters nT, ¥ for the diode presented in Chapter I.
For example, if we apply 20 v across the diode, the normalized constants
are: O = 1,12, B = 0,857, nz = 390. The result is shown in Fig. 7.

Now that we have shown that a self-consistent dc solution of the
basic type always exists and can be determined uniquely from an arbitrary
set of boundary values, we will examine the spatial derivative of the

space-charge function of this basic solution.

*
Stanford version of Burroughs algorithmic language.
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FIG. 7. THE RELATION BETWEEN THE CALCULATED SEPARATION LENGTH AND
ﬂT = nM - ﬂm FOR AN OPPOSITE-STREAM DIODE,

E. THE CONTINUITY OF dp/d§ OF THE BASIC SOLUTION

We have to examine the continuity of dp/d§ at the points 1 = ﬂm

and 1M = 7 only. Elsewhere dp/d§ is well-behaved.

Physiral intuition suggests that the spatial derivative of the
space-charge function should be continuous everywhere inside the diode;
therefore we take the case when nm < 0, nM > nz, so both points are
located inside. If dp/d§ were discontinuous or infinite in the diode,
it would be necessary to reexamine our model. First of all, collisions
are always present. Even if the number of collisions can be neglected
under ordinary circumstances, their effect will certainly be pronounced
in a situation where the collisionless model predicts discontinuity of

the space-charge function. Diffusion currents caused by such disconti-

nuities could hardly be considered negligible, for they would destroy
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such discontinuity. 1In the case when collisions are totally absent, a
small rf perturbation of the dc state would have the same effect through
the process of phase mixing. Consequently, whenever discontinuities of
such a kind appear, collisionless dc analysis is not adequate,

To calculate dp/d§ we use the equality:

-emP (45)
Let us make our calculation at the point 7 = nm. Here the space-charge
contribution of the ions is a regular function of 1, so dpi/dn is
finite. The electric field, on the other hand, approaches zero like
iCl vfﬁ_:_ﬁ;; (See Eq. (37) for the expression of the electric field.)
The major contribution of dp/ﬂﬂ comes from the electrons because
dpe/dn approaches infinity like Cz/ivﬁrtrﬁ;— when T approaches ﬂm
Neither Cl nor 02 is zero, therefore dp/d§ will be finite and non-
zero. The continuity of dp/d§ will now depend on the sign of dpe/dn
and of €&(n) at both sides of the point 1 = nm. The potential has a
true minimum at 1 = nm (as opposed to the case where nm = 0), there-
fore S(n) will change sign when 1 1is passing through 71 . Whether
dpe/dn will also change sign depends on the functional for$ of pe(n).
If we have to change F+(n) to F () at the point 7 = n, in the
expression given for pe(n) in Eq. (19), the sign of the derivative of
pe(n) will also change. 1In this case dp/d§ will be continuous. As
shown in this section for the basic solution, this condition is always
satisfied for both the electron space-charge function at the potential
minimum and the ion space-charge function at the potential maximum.
Consequently, we can conclude that dp/d§ will always be continuous for
the basic solution inside the diode.

As mentioned earlier, the potential function can become periodic
in space under some circumstances, in which case it will be seen that

dp/d§ is discontinuous. This case is discussed in the following

chapter.
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Iv. THE PERIODIC DC SOLUTION

The preceding chapter showed that a basic solution of the dc
potential function always exists in the opposite-stream diode and it
is single valued. The term "basic solution" is used for the case when
the potential in the diode reaches its maximum and minimum values only
once, When both maximum and minimum appear inside the diode it is easy

to extend the basic solution to the periodic type of solution shown on
Fig. 8.

a. The basic solution

~ Nt §

b. Periodic solution with three half periods

¢. Periodic solution with the largest number
of half periods possible for this diode

FIG, 8. THE CONSTRUCTION OF THE PERIODIC
SOLUTION FOR A DIODE.
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A, THE CONSTRUCTION OF THE PERIODIC SOLUTION

In Chapter II it was seen that the differential equation of our
problem was satisfied with both signs of the square root in the velocity-
distribution functions [see Eq. (11)]. The choice of these signs has to
meet the boundary conditions of the physical diode, Let us start at the
electron emitter of a diode inside of which there is a basic dc potential
function of type D. Before the electrons reach the minimum, their space-~
charge function contains F+(n) which changes to F_(n) after the mini-
mum. On the other side of nm’ both streams have F-(n) in their
respective space-charge functions, Going toward the ion emitter, we
arrive at the point of maximum potential, For the basic solution, F_(n)
would change to F+(ﬂ) in the space-charge function of the ions. How-
ever, let us keep F-(n) for both streams, in which case the solution
becomes periodic. Since we have an ion emitter at the far right, we
have to change F_(n) to F+(ﬂ) in the space-charge function of the
ions at the maximum point after a finite odd number of half periods.

The potential on the other side of nM is continued to the ion emitter.
Hence, we have constructed a periodic solution for our differential

equation which satisfies the boundary conditions also.

B. THE SPACE-CHARGE FUNCTION OF THE PERIODIC SOLUTION

As mentioned before, there is a difference between the two extrema
that are near the respective emitter planes (which actually limit the
currents) and the remaining extrema which appear periodically between
the first two. The form of the space-charge function does not change at
the latter points; however, there is a change at the current-limiting
extrema. The physical difference in these cases is apparent from the
determination of the spatial derivative of the space-charge function in
Sec. IIIE. For the periodic extrema the derivative dp/d§ will be
finite and it will have different signs if we approach the periodic
extrema from different sides (see Fig. 9). This discontinuity makes our
dc analysis of questionable value. It requires some rf analyses to
determine how long, if at all, these periodic types of solutions could

be supported in a diode of given dimensions.
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THE PERIODIC SOLUTION
1\ Potential

__.f_.
Aj’;’:’é?gntiul
S

> Distance

———Separation distance ——

L.

MSpace charge

The derivative of
space charge density
dp .

| d_x IS

'T“ discontinuous

q

Electron Ion
emitter emitter

FIG. 9. THE SPACE-CHARGE FUNCTION OF A PERIODIC SOLUTION,
The derivative of the space-charge function is continuous
at the first minimum and at the last maximum, but it is
discontinuous at the other extrema.

C. DETERMINATION OF THE POSSIBILITY OF PERIODIC SOLUTIONS FOR A
GIVEN OPPOSITE-STREAM DIODE

For a given separation distance between the emitters, periodic
solutions would allow more current to flow in the diode than the basic
solution, and hence could be detected by simple dc measurements.
Consequently it would be desirable to be able to predict from theory
whether, in a given diode, periodic types of potential functions could
exist or not. A simple procedure is presented which could establish
this fact for any given opposite-stream diode.

If we follow the procedure of generating periodic solutions explained
in Sec. IVA, we can construct any odd number of half periods by increas-
ing the separation distance between the emitters. In an experimental
diode, the separation distance is usually fixed; therefore, in order to

fit more than one period into the space, we have to decrease WM and
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increase nm' We can thus increase the number of periods in the diode
until one of the extrema is shifted to the boundary plane (see Fig. 8c).
When this occurs, no more periods can be fitted in the diode space for
the given conditions.

This procedure offers a convenient way to determine the maximum
number of half-periods which could be present in the diode. 1In Fig. 8
it is seen that the length of one half-period of the highest order

solution, § is slightly less than the separation length of the transi-

0’
tion case D-B or D-C. We called this length gD . The difference
min
and §D is the region between the unsaturated emitter
min
and the current-limiting extremum, which is usually small. Even for

between §0

small nz the length of this region is no larger than 10 percent of §0.
Since we are presenting a graphical procedure for designing purposes,

the use of ¢ in the place of §0 gives no noticeable error. If

D .
min

we divide the normalized separation distance § by this length 50,

2
then the largest odd integer still less than this ratio §2/§0 will give
the maximum number of half-periods that could exist in the diode.

We have calculated and presented here curves which give § for

’
most practical cases, as a function of the values of &, B, and0 n2.
We can calculate these values from the known construction and operation
of the diode, by Eq. (31), and by the aforementioned normalization
procedure. Given the values of 4, B, and nz, one can determine 50
by the aid of the curves presented in Appendix C. The curves are given
only for B > 1 because by simultaneously taking 1/6 instead of B,
and 1/1 instead of Q, §0 will remain unchanged. Since §2 is also
given, we can form the ratio §2/§0 and determine the maximum number of
half-periods possible in the diode.
we can show the work inmvolved in thi by
example which was presented in Chapter I. Let us assume that we operate
this diode with 30 v across it and would like to determine whether
periodic types of solution could be present, Summarizing, the boundary

values of this diode are:
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Jse = 0.1 amp/cmz, Jsi = 10_3 amp/cmz,
T, = 1200° K, T, = 1400° K,
V2 = 30 v,
d = 0.2 cm,
N mi/me = 112
From these values and Eq. (15), we obtain
21(m J
N =J — & - 4.02 x 10 ——2 = 1,16 x 101 electrons/cm3

e se 2

= 1.2 x 1011 ions/cm3

]

ani
N. =J_, - 4,02 x 10
i si e KT

so that, from Eq. (26), we have

ﬁl‘*

= 3
N =N+ Ne = 2.36 x 1011 particles/cm

_ N.T 4 NT
Tz —— = = _ °
N + N 1302 K
1 e
€ kT [=
— -4
A= g_ = 6.9 ég-: 5.13 x 10 cm
e N N
Then,
d
€, = — = 390
A
00
N, = = g = 116 vV, = 178
kT T
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For g =1, ¢ = 0,89, nz = 178, the first diagram of Appendix C gives

§0 = 140. The ratio §2/§0 390/140 = 2.8 < 3, so that no periodic

solution is possible,
If the diode separation were 1 cn, §2/§0 would be 14 and thus the

maximum number of half-periods possible would be 13,

D. DETERMINATION OF CURRENT FLOWING THROUGH THE DIODE WHEN ONE EMITTER
IS SATURATED
As we have seen, the potential function with the largest number of
half-periods that can exist in the diode causes saturation of one of the
emitters. The same effect happens if periodic solutions are not possible;
but we apply such a large potential across the diode that the correspond-
ing gD . becomes equal to 52, the separation distance. In both cases
min
we have to determine whether the diode is ion- or electron-rich in
order to tell which emitter will saturate first and what value of current
is flowing through the diode for this voltage. We can do this by the
function G_(x) - 1.0 (see Table 2 for conditions for the diode to be
ion- or electron-rich). This function is shown graphically on Fig. 10,

With the aid of this graph, we determine two quantities:

Q

o =9, [e7(B, ny) - 1.0] (46)

Q, =a, [6(p, n,) - 1.0] (47)

where nz is the normalized potential difference of the emitters when

saturation of one emitter occurs.
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FIG. 10. THE FUNCTION G (x) - 1.0, WHICH IS USED FOR DETERMINING
WHETHER THE DIODE IS ELECTRON- OR ION-RICH,

When Qe > Qi’ the diode is electron-rich and the ion emitter
saturates first. The total current density in the diode at this

saturation point is given by

J =J .+ (48)

Stotal s1 se

.OID
o
o

When Qi > Qe’ the diode is ion-rich and the electron emitter

saturates first., The current density will be

O

e
J =J +=J_, (49)
stotal se Qi si
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For the diode example used, no periodic solution was possible;
therefore, at V2 = 20 v neither emitter can saturate, If we look for
the potential which saturates one of the emitters of the diode that
causes D-B or D~C transition of the basic type, we can simply set EO
(or §D . ) equal to 52, and look up in the given curves the correspond-

min
ing potential value, Since & = 0,89 and B = 1, we find that the
saturating potential ns is equal to 780 (see diagram (a) in Appendix C).
This is equivalent to 88 v. Working out values for Qe and Qi’ we

obtain

__avp

Q [ (B 1) - 1.0] = 14.6
€ 1 +a4B e s
1 -
Q. = —— [¢(B. n ) -1.0] =~ 16.3
1 1 +C Jb 1S

Hence the diode is ion-rich, and the total current density at saturation

is:

Sl /

Stotal i

It does not seem practical to give tables of data of diode
characteristics since four boundary values are involved and even limited
ranges of these values would require numerous tables. The computer
program we have written does this job efficiently for any desired set
of boundary values. Therefore, we are using the program as the final
means of calculating diode characteristics, Information on this

numerical program can be found in Appendixes A and B,
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V. COMPUTER SIMULATION OF THE OPPOSITE-STREAM PLASMA DIODE

In the earlier chapters a complete dc theory of the opposite-
stream plasma diode was presented. The results of this theory were
calculated after making three basic assumptions. These were: motions
of particles are confined in one dimension, collisionless conditions
are present, and the state of the diode is time independent. To deter-
mine how closely these results can predict the behavior of an actual
device, it is necessary to examine these assumptions as to their
realizability under laboratory conditions.

The first two assumptions can be well approximated experimentally.
The assumption of time-independent behavior, however, is not realistic
and is necessary only in order to make the mathematical analysis feasible.
Nevertheless, if the dc states are stable under time-varying conditions,
then the time-average behavior of an experimental device will approximate
its theoretical dc operation. But the question of stability can be
decided only by a time-dependent analysis. This question becomes more
complex when, as happened in our analysis, more than one self-consistent
dc state is possible for a set of boundary conditions. In this case,
not only the stability of these dc states is of importance but also the
knowledge of the conditions under which a particular dc state can develop
in the diode.

The usual technique of linearizing the time-dependent, collision-
less Boltzmann equation by assuming small-amplitude perturbations could
not be applied to our problem, The nonlinear effects of particle trap-
ping in potential wells would be lost in a linearized theory, and these
effects play a major roll in the operation of our diode, since a
potential maximum is formed near the ion emitter and a minimum near the
electron emitter. On the other hand, if we try to follow the same
procedure for the time-varying case as was used for the dc theory, we
find a hopelessly complicated set of integrodifferential equations..
This set includes the time-varying collisionless Boltzmann equation,
Maxwell's equations, and the boundary conditions of our diode. Even if
there were hope of obtaining an analytical solution to this set of

equations, the extensive use of a computer would be unavoidable.
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Fortunately, our efforts and computer time could be used much more
efficiently by applying the well-known computer model of a one-dimensional

plasma to our problem.

A, HISTORICAL DEVELOPMENT OF THE COMPUTER MODEL OF ONE-DIMENSIONAL
PLASMAS

As early as 1943, D. R. Hartree and P. Nicolson [Ref. 12] used
the computer simulation of the motion of charged particles in one
dimension. In their paper, as in all subsequent papers written on
computer models of one-dimensional plasmas, charges are represented as
infinitely thin charged sheets that are moving perpendicular to their
plane and carrying a set number of coulombs per area surface charge.
Advance of time occurs in steps. During one time step the positions
of the charged sheets are changed according to their velocities, and
their velocities are changed according to their accelerations. The
acceleration of a charged sheet is determined by the electric field
that is acting on it, while the electric field is calculated from the
positions of the charged sheets. If the duration of one time step is
taken short enough, the electric field can be considered constant during
this time interval. This means that the motion of sheets can be
calculated independently for this time interval, since they experience
constant acceleration. After the positions of all the sheets are
changed, the electric field is recalculated and time advances by one
time step. The calculation of the trajectories of the sheets involves
only elementary arithmetic operations and a record of the positions and
velocities of all the sheets employed. Hence the facilities of a
digital computer are sufficient to perform these calculations.

Many authors since Hartree and Nicolson used the described pro-
cedure of compuiaiion for their varicus applications of one-dimensional
plasmas., These works differ mainly by their methods of introducing the
charged sheets into the plasma and by the boundary conditions of their
models. The model of an infinite plasma (periodic boundary conditions)
with equal number of electron and ion sheets was used by Buneman [Ref. 13]
to show the randomization process of the motions of electrons and ions

that had directed energies initially in a plasma. Dawson [Ref, 14] gave
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an extensive study of the statistical behavior of the computer model
of a one-dimensional plasma considering the motions of electron sheets
in a neutralizing background of infinitely heavy ions.

The same computer model with minor alterations was applied also to
finite or semifinite models of diodes, electron beams, or electron-ion
systems. Analysis of the limiting perveance of electron beams and the
investigation of tramsient effecls in eleciron diodes were carried out
by Birdsall and Bridges [Ref. 15], Twombly and Lauer [Ref. 16], and by
Lomax [Ref. 17]. 1In these works electron sheets were injected at a
plane with a given entrance velocity into a diode of finite size. Dunn
and Ho [Ref. 18] considered a semi-infinite space that started at a
plane where ion and electron sheets were injected. Assigning the electron
sheets and ion sheets different masses and entrance velocities, they
observed the neutralization effects of cold electrons in ion beams. The
same problem with randomly emitted electron sheets was analyzed by
Buneman and Kooyers [Ref. 19]. The random emission of electron sheets
simulated a thermionic electron emitter in their model.

A paper by Tien and Moshman [Ref. 20] is different from those
described above because they considered thermionically emitted electrons
at a fixed position in a finite diode. For this reason this paper is
more closely related to our approach than the papers already mentioned.
They considered a finite space with a thermionic electron emitter as one
of the boundary planes. The other plane was a collector of electrons.

A constant potential was applied across the two planes. They were
interested in the noi§e figure of an electron diode that is influenced

by the fluctuations of the potential minimum near the thermionic electron
emitter, Having an average of 363 electron sheets in the diode that
were injected at the plane of the electron emitter in a random manner,
they were able to determine this minimum noise figure.

For the computer simulation of the opposite-stream plasma diode,
the model of Tien and Moshman has to be used with the addition of a
thermionic ion emitter at the second boundary plane. This addition
posed no difficulty. The major problem arose from the fact that we
were interested in the formation of stable dc states in the diode and

that only a very large number of ion and electron sheets could reveal
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that the diode has a quiescent state. It is impossible to handle
several thousand sheets in accordance with the strict rules of the
computer models described above; even on a modern, high-speed computer
these calculations would take a long time, Consequently, we had to
alter the computer models in many ways., These alterations will be

discussed in the next section.

B. COMPUTER MODEL OF THE OPPOSITE-STREAM DIODE

Our aim was to construct a computer model of a one-dimensional
plasma diode with thermionic electron and ion emitters and with the
capability of handling thousands of sheets at every time step. Theoreti-
cally, the computer models described above would be sufficient for this
aim, but, because of their slowness of operation, they do not suffice.
In these programs the major part of the time is spent on the calcula-
tion of the electric field. 1In order to assign the right acceleration
io the sheets, the electric field has to be determined at each point
where a sheet is located. This can be done only if the sheets are
arranged, i.e., sorted according to their positions in the diode. For
several thousand sheets this sorting procedure is so slow that it makes
the whole program uneconomical, Fortunately, the calculation of the
exact field in the diode is not necessary; an approximating procedure
that uses coarse graining in space can avoid the complete sorting of the

sheets and produce results in a much shorter time,

1. Coarse Graining in Space

In the computer diode a charged sheet represents a certain amount
of surface charge; therefore, the electric field is discontinuous across
it. Let us assume that the value of the electric field is given at the
left boundary plane, and for convenience, that it is zero. (The calcula-
tion of the true field at the left plane will be discussed in a later
section.) The calculation of the field in the diode, or of the accelera-
tions of the sheets according to the exact field, is as follows. (See
Fig. lla.) The field is unchanged until a sheet is reached, i.e., the

one nearest to the left plane. At the position of this sheet the
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DIODE DETERMINED BY CHARGED SHEETS IN THE DIODE SPACE.
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electric field jumps to a new value. The amount of the jump is pro-
portional to the surface charge that the sheet represents. The accelera-
tion of this sheet is determined from the field at the middle of the

Jjump, E on Fig. 1lla, On the other side of the sheet the field is again

1’
constant until the next sheet is reached, where it changes its value by
the same amount as before., The direction of the change is determined by
the sign of the charge on the sheet. The accelerating field acting on
this new sheet, E2, is taken again at the middle of the jump. Since the
order in which the sheets are following each other in space is known,
this procedure can be continued from sheet to sheet,

In the coarse-grained model (coarse graining in space was first used
by Dunn and Ho in Ref, 18 and it was also applied by Hockney for the
computer model of a two-dimensional plasma [Ref. 21] p. I-102), the diode
space is divided into a number of small segments that have equal lengths,
The position of a sheet is recorded exactly as in the earlier models,
but its charge is assumed to be uniformly distributed in the segment in
which it is located. If there is more than one sheet in a segment, the
algebraic sum of their charges is taken and distributed uniformly.
Consequently, in each segment the field is a linear function of distance
and its total change across a segment is determined by all the sheets
that are located in it (Fig. 11b). All these sheets are given the.same
acceleration that is determined from the value of the electric field at
the middle of the segment.

When we use this coarse-graining procedure we are allowing for an
error both in the calculation of the electric field and in giving the
same acceleration to all the sheets that lie in one segment. The error
in the evaluation of the electric field is small if there are a large
number of sheets in the diode and if the length of a segment is a frac-
ion of thc characteristic Debye length, N. The error in giving
neighboring sheets exactly the same acceleration cannot cause a false
collective phenomenon in our model because even initially the velocities
of the sheets are in disorder. We have made trial calculations with
both the exact and the coarse-grained methods having an average of 1000

sheets in the diode. We have divided the diode that was 40 Debye lengths

long into 1024 segments, The results obtained by the coarse-grained
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method did not differ noticeably from that of the exact calculations;
furthermore, there was a considerable saving in computer time. 1In later
calculations we used nearly 10,000 sheets and could expect that the
approximations used did not affect our results at all.

The sorting of the sheets is eliminated because the electric field
is now calculated at fixed points in the diode and not at the changing
positions of these sheets, A detailed description of these calculations,

as well as other parts of this computer program, is given in Appendix D.

2. Moving the Sheets During a Time Step

On Fig. 12 the schematic diagram of the computer model is shown.
The first major function that the program executes is the advancing of
sheets according to their velocities, accelerations, and equation of
motion. The equation of motion of the sheets can be represented by a

vector equation in the space of N dimensions where N is the number of

sheets.

x = f(x) (50)

The two dots signify the second derivative with respect to time. The

-
components of the position vector x are the x positions of the N

sheets, and the components of the vector .; are the accelerations of
the sheets, respectively. The solution of this highly complicated,
nonlinear differential equation is carried out by increasing time in
small steps and making some assumptions about the behavior of the diode
during one time step. The state of the diode can be calculated from
its known state at the previous time step. The assumption is usually
made that during a time step (At) the accelerations of the sheets are

constant. Then, if the positions and velocities of the sheets at time

- Y
tn are x(tn) and x(t ), their new positions and velocities are
n

calculated from the following expressions:

-

x(t

)

- RN 1°> 2
= At
0l x(tn) + x(tn) AN A > x(tn) (at)

(51)

x(t ) + x(t ) Ot
n n

?c(t )

n+1l
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ONE-DIMENSIONAL DIODE.

where ;(tn) is given by Eq. (50) from ;(tn). This procedure is
correct when At approaches zero, but it could cause a considerable
error in the calculations for a finite At if there are regions in
the diode that are greatly influenced by the distribution of charges.
In this case a small change in the position vector could cause a large
change in the acceleration of the sheets during a time step. Naturally,
this is the case for a nearly neutral plasma, in which the assumption
of constant acceleration even for a small time step cannot be made.
Dunn [Ref. 21] has demonstrated that when using the above procedure in
a neariy neutral plasma ihe ampliiudes of oscillaiions were increasing,
though rigorous analysis showed that only sinusoidal oscillations could
be present.

The assumption of constant acceleration of the sheets during a
time step is not necessary. Any model that gives the exact results for
the case of constant field in the diode is acceptable. This means

that if the field in the diode is a constant both in space and in time,
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the results of the computer calculations cannot be functions of the size
of the time step and they have to agree with those calculated by Eq. (51).
If this condition is satisfied, then we are certain that the calculations
give the right results when At approaches zero. Furthermore, if we

do not assume that sheets have constant accelerations during a time step,
our solution is a good approximation to the exact solution when a small
but finit

-
Let us observe first that the acceleration of the sheets x, given

by Eq. (50), is determined at times when the position of the sheets are

known. Hence, ; is known only at times separated by certain time
intervals. Let us assume that our calculation was exact up to time tn,
and from the past motion of the sheets and their accelerations at time

tn’ we would like to calculate their positions at a future time t

n+1l’
(See Fig. 13.) Since we know the positions of the sheets at time

tn-l’ we. know the change in their positions that occurred in the time
interval t <t <t_ .. We call this change (/x) . Our aim is
n-1 — n - ntl tn—l
to calculate (Ax)t , which determines the positions of the sheets at
n
time tn+1' We know the value of the second derivative of x at time

tn; we make the assumption that this derivative does not differ much
from the second difference of X divided by the square of the time
step. The second difference of ; can be calculated from the first
differences (Ag)t and (A;)t , giving
n n-1
-
- (83),

(e ) = —2 n-l (52)
tn) (At)z 5

From Eq. (52), (Ag)t can be expressed and the new positions of the
n
sheets are given by the expression:

R, ) =x(e) + (G0, =Fe)+ (), +x(y) @07 (53)

+ 1
n n tn n-1
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FIG. 13. TRAJECTORIES OF CHARGED SHEETS AS APPROXIMATED BY A

5
STEP-BY-STEP ADVANCE OF TIME. The acceleration x(t) is given
at time tn

If the acceleration of a sheet is constant, the trajectory of the
sheet becomes a second-order parabola and the described method gives
this trajectory independently of the size of At used. Let us consider
a sheet that has a position x(tn_l), and velocity v(tn_l) at time
t = tn—l’ and that it is in a constant field region. If the acceleration
of the sheet is "a" (a constant), then the change in the position of the

sheet during the time interval t <t <t is
n-1 - n— n+l

(ax),  =v(t__) ot + 2 a(ot)? (54)
n-1
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The position of the sheet at time t = tn is x(tn), and

x(tn) = X(tn—l) + v(tn_l) At o+ % a(At)z (55)

Equation (53) gives the value of x(tn ) since the acceleration of

-+ 1
the sheet is "a" at time t = tn also. The resulting relation is

1 2 2
= A =
X(tn+1) x(tn) + v(tn_l) t+5a (At)° + a (bot)
(56)
=x(t )+ v(t ) (28t) + = a (26t)2
n-1 n-1 2
which is the exact position of the sheet at time t =t calculated

n+1l
by its equation of motion., This result shows that our model approaches

the true physical diode if At —» 0, By treating At as a parameter of
the computer model, we can examine the results of computer runs that
were made with different At but which apply to the same physical
situation. If we decrease At and do not observe any change in the
results, then it is certain that the error in using finite differences
instead of differentials is not significant, Since we deal with a
physical device, we are certain that this limit can always be reached
with a small but finite At,

We have shown how our computer program advances the sheets during
a time step. A record is kept of the position and the previous change
of the position of each sheet as long as the sheet stays in the diode
space. The accelerations of the sheets can be calculated from their
self-field, in which case the natural behavior of the diode is reproduced;
or it can be calculated from a prescribed dc field distribution, in
which case a desired state is forced on the diode. The actual procedures
of the computer program that execute the advancing of the sheets are

discussed in Appendix D.
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3. Injecting New Sheets in the Diode

The electron and ion emitters of our model are simulated by the
injection of electron and ion sheets at their respective emitter planes.
Before discussing the assignment of the initial velocities to these
sheets, it is necessary to show the relation between the initial velocity
of an injected sheet and its equation of motion for the first time step
it spends in the diode space. The successive motion of the sheet is
then calculated by the procedure of the previous section,

Let us assume that a sheet is injected into the diode during the
time interval tn_1 <t < tn (Fig. 14) at one of the boundary planes,
and with an initial velocity VO' Since we do not know the exact time
of injection, we assume that it was injected at time t = tn - R At,
where R is a number between zero and one. At time t =t a position

x(tn) and a previous change of position (Ax)t has to be assigned
n-1

to this sheet so that it can be moved during the next time step.
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FIG. 14. TRAJECTORY OF AN INJECTED SHEET DURING THE FIRST
TIME STEP IT SPENDS IN THE DIODE SPACE,
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In order to determine the values of these two quantities as functions

of v0 and R, we use the condition that our model has to be exact when
the field is uniform in the diode. Consequently, the simple3t assump-
tion is that the acceleration of the injected sheet is a constant during
the time interval tn-l <t< tn' This acceleration is calculated from
the field in the segment nearest to the emitter plane, and at time

t = tn—l' Let us call this acceleration ao(tn_l) for the sheet injected,
then the position of the sheet at time t = tn can be expressed as

1 2
= JAN A t R At 57
x(t ) = vy ROt + 3 ag(t 1) (R &¢) (57)
assuming that the injection plane is located at x = 0. When calculat-
ing the previous change in the position of the injected sheet, we

extrapolate its trajectory to time t = tn 1 (See Fig. 14.) Assuming
constant acceleration for this trajectory, this change can be calculated

by the following expression:

(Ax)tn_l = vy Bt +ag(t ) (R - 3) (at)? (58)
The injection of sheets occurs at a constant mean rate, i.e., a
set average number per time step. In Egs. (57) and (58), R could be
represented as a random number uniformly distributed between O and 1.
This arrangement would simulate the continuous operation of the emitter.
In our case, however, such an arrangement would be an unnecessary
complication, since the initial velocities of the sheets are already
randomized. We can eliminate R by considering it as a random number
and calculate the average values of the above expressions. The averag-
ing yields to the following values of the initial conditions of an

injected sheet:

x(tn) = % v Ot + % ao(tn_l) (At)z
(59)
(Ax)t = v, At
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This rigorous derivation of the initial conditions for the injected
sheets has not been used in earlier works, though an error in assigning
x and Ax to the injected sheets could cause large deviations (10—20
percent) in the values of the current limiting extrema near the emitters.

The random velocity v and the instant of injection indicated by R

0
are uncorrelated.

We used the method of Tien and Moshman [Ref. 20] to simulate the
thermionic emitters of the opposite-stream diode. A sequence of numbers
R', called pseudo random numbers, is generated in the IBM 7090 computer
with the Power Residue Method [Ref. 22]. These numbers are uniformly
distributed in the unit interval, so 0 < R' < 1, where R' signifies a
member of the sequence. Whenever a sheet is injected, a successive

member of the sequence is calculated. If the sheet is an electron

sheet, it will be assigned the initial velocity:

2kTe
_ -— 1
Voe = n_ J - log R (60)

If it is an jion sheet, its initial velocity will be given by
2kTi
— - H
Voi = m v - log R (61)

The symbols mean the same as before: T 1is temperature, m is mass,

and k is Boltzmann's constant., The symbol R' stands for a particular
member of the sequence of pseudo random numbers uniformly distributed

in the unit interval and uncorrelated with R.

4. Calculation of the Electric Field, and Current Density in the
Diode

The electric field is determined by the combined effect of the
distribution of charges in the diode (p) and the applied potential
across the emitters, (Vz). We have considered only the former (Sec. 1)
until now. When the applied potential is constant in time, as was the
case in all the aforementioned papers on computer models, the separa-

tion of these two effects is immediate. This method can also be used
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when the applied potential is a function of time, but we have to show
that it is compatible with the physics of our problem.

The electric field in the diode, E(x,t), satisfies the following

equations:
d
.[ E(x,t) dx = - V,(t) (62)
and
OE(x,t) _ p(x,t) (63)
Ox 60

The field is separated into two parts as in the case when V2 was

constant, so one part will not be a function of space:

E(x,t) = El(x,t) + Ez(t) (64)

We can force a condition on the other part:

d
].El(x,t) dx = O (65)
0
From Eqs. (62), (64), and (65), E2 can be determined, giving
v,(t)
Ez(t) = - — (66)
The substitution of Eq. (64) into Eq. (63) yields the result
aEl(x,t) 1
L L () (67)
ox €

0

The separation is completed, since E1 depends only on the space-charge

distribution in the diode and E2 is a function only of the applied

potential. In order to calculate the total field that is acting on the

sheets, E1 and E2 are determined separately and then their sum is

taken,
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In Sec. Bl of this chapter we showed the construction of the field
in the diode with the assumption that it is zero at the left boundary
plane (x = 0). These calculations involved only El; the applied
potential was ignored. With the assumption of zero field at the posi-
tion x = 0, Eq. (67) can be integrated. Let us call this field E'.

1

The difference between E1 and Ei is not a function of distance and

can be determined by using Eq. (65). The relation is:

d

El(x,t) = Ei(x,t) - %‘[ Ei(x,t) dx (68)
0]

With the help of Eq. (67), E1 can be expressed as a function of
p(x,t) only. The result is given by Eq. (69).

X X

d
El(x,t) = ei j p(x,t) dx - %/(fp(x,t) dx) dx (69)
0 0

° Lo

For the coarse-grained model of our diode (see Fig. llb) the
integrals of the above expressions become sums of integrals. The
integral of the coarse-grained field is calculated in each segment and

then the results summed over all segments. In Eq. (68) for example,

d
the expression % f Ei(x,t) dx becomes
0

Yo(ma/N) d

Ei(x,t) dx (70)

2

N_.
s
n=0

(n/Ns) d
where N is the number of segments in the diode, fi is the coarse-~

s
grained field, and d 1is the length of the diode. Since the field
varies linearly in each segment, the area under it is given by the pro-
duct of the length of the segment (d/NS) and the value of the field at

the middle of the segment, which we will call fi(n,t). Here "n" signifies

the segment number. Hence,
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(n+1/NS) d

B _ 4 %
(n/Ns) . El(x,t) dx = NS El(n,t) (71)

and the total integral becomes the summation:
N -1
1 —_
— EI 72
N :E (0, %) (72)

n=0

Since the coarse-grained field is determined at the midpoint of each
segment, the above expression is used in the place of the integral in
Eq. (68).

Current is continuous in space; therefore, the current density of
our model cannot be a function of position., Maxwell's equations show
that current has a conductive and a displacement part; similarly, the
current density (J(t)) of a one-dimensional plasma breaks up into two
parts: a conductive part that is carried by the charged sheets of the
model, and a displacement part that is determined from the time deriva-

tive of the electric field. We can represent this by the following

-

3(t) = 3 (x,1) + € OE(x, t) (73)

0 3¢

equation:

The electric field is separated into two parts (see Eq. (64)). Sub-
stituting Eq. (64) into Eq. (73), we arrive at the following form of

the current density:

OE_(x,t) dE_(t)
J(t) = jc(x,t) fe — e 2 - (74)

0

ot O at
The first two terms on the right-hand side of Eq. (74) depend only on
the distribution of charged sheets in ‘the diode. The sum of these two
terms can be a function of time only, for the other terms of the equa-

tion are both independent of distance. This sum, the convection

current density in our diode, will be represented by the symbol Jconv
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and calculated by the following expression:

BEl(x,t)

Joony(t) = 3g(x,t) + €

conv (75)

ot

The last term in Eq. (74) signifies a current that is due only to the
applied potential across the diode. This current is zero if the applied
potential is constant. Consequently, this term represents the displace-
ment current density in the capacitance of the empty diode. The symbol
Jdisp(t) is used for this part of the current density. If Eq. (66) is
substituted into Eq. (74), the last term of the equation becomes

€ )dVZ(t)

(1) = - (2) = (76)

Jdisp

We constructed an equivalent circuit diagram of the computer model
on the basis of Egs. (75) and (76). The application of this circuit
diagram becomes important for the case when an external impedance is
connected to the diode. With the help of the circuit equivalent, one
can determine conveniently the relations between voltages and currents
in the circuit and calculate these quantities at every time step by the
computer. We will show a simple application of the equivalent-circuit
model in the next chapter.

Since the current density of the diode is the sum of two terms,
the circuit equivalent is represented by a parallel circuit (Fig. 15).
One branch represents the capacitance of the empty diode, the other
shows a current generator that can be influenced by the voltage that is
applied across it., The current of this generator at each time step is
influenced also by the momentary distribution and motions of the sheets
in the diode., We showed this dependence simply by writing the current
as a function of both V2 and time. The equivalent-circuit diagram of
the computer diode is shown on Fig. 15, The symbol "A" is the cross-
sectional area of the diode.

It is still necessary to describe the method by which Jconv(t)
is calculated in our diode model. Since this convective term is the

sum of two expressions that are both functions of distance, a reference
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FIG. 15, EQUIVALENT-CIRCUIT DIAGRAM
OF THE COMPUTER-SIMULATED DIODE.

position has to be given at which these expressions are calculated.
For convenience, we take the plane of the electron emitter as reference,.
The first term on the right-hand side of Eq. (75) gives the value
of the current density that the charged sheets carry. Each charged
sheet represents a set amount of surface charge, g . During a time
step, At, a certain number of sheets cross the reference plane, or what
is equivalent, some amount of charge per area crosses the electron
emitter. All sheets carry the same absolute amount of charge, only the
sign of ¢ 1is different for the ion and electron sheets. We can deter-
mine the total amount of charge that crosses the reference plane during
a time step in the following manner. We add the number of electron
sheets that are injected in this time interval to the number of ion
sheets that leave the diode space at the electron emitter during the
same time interval. We subtract from this sum the number of electron
sheets that return to their emitter during At and call the resulting
number AN. The product g AN is the amount of positive charge per
area that crossed the plane of the electron emitter from right to left
during the time interval At, hence the contribution of this charge to
the current density is c'ANﬁﬁt. The direction of this current is in
the direction of decreasing position, therefore it is substituted into

Eq. (75) with a minus sign. The time step At is a constant, but the
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number of the crossing sheets is a function of time, for the sheets are
arriving at the electron emitter in a random manner.

With the known value of jc(x,t) and with the substitution of
differences in the place of the derivative, Eq, (75) can now be calculated.
At time t =t . the value of El(x,t) at the electron emitter is
El(O,tn_l). During the time interval At, sheets are advanced and new
sheets are injected; also AN is calculated. The moving sheets change
the electric field; E also changes and is recalculated at time

1

t =1t + Ot, i,e., at time t = t_. This new value is E_(0,t ). The
n-1 n 1 n
convective current density is given by Eq, (75); or with the substitu-

tion of the above quantities, it becomes:

3 (t ) = - g AN El(o’tn) " El(o’tn—l) (77)
conv' n’ Nt 0 At

Current is continuous in the computer model, since the value of Eq. (77)
is independent of the reference plane used.

We have described the sheet model of the opposite-stream plasma
diode. This model is made suitable for computer calculations by a
normalization procedure and several numerical methods. The success of
our computer model depends greatly on these methods, for they determine
the accuracy and speed of the calculations., These methods are described

in Appendix D.
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VI. CHARACTERISTICS OF THE COMPUTER-SIMULATED, OPPOSITE-STREAM PLASMA
DIODE

In the preceding chapter and in Appendix D the construction of the
computer program was described. We proceed to use this program to find
the behavior of the opposite-stream plasma diode, i.e., conduct a large
number of computer experiments from whose results we are able to predict
the diode's behavior with certainty in all circumstances. The use of a
high-speed computer has to be limited to time intervals of the order of

minutes to make the computer calculations economically

=

easible; on the
other hand, a computer experiment has to refer to a real-time interval
that is meaningful for a real experiment. Consequently, the relation
between computer time and its equivalent in real time has to be discussed
first.

In a finite diode, such as the opposite-stream diode, the shortest
"meaningful"™ time interval for an experiment can be derived from the
average transit time of the slowest particles. The transient behavior
of the diode must depend on this transit time, for an equilibrium state
can develop only in the order of a few average transit times of the
slowest particles. It can be shown easily that the average transit
time of the ions for very low applied voltages is directly proportional
to the length of the diode and to the square root of the ratio of ion-
to-electron mass.

Time in the computer model (T) is measured in a normalized form
(see Appendix D). The relation between normalized time and real time

is given by the following expression:

(78)

e

I
>1 <1

o+

(Note that T 1is a measure of time in a physical sense, not a measure
of the actual time the calculations take. The relation between T and
the time of computations will be discussed later.) In the above

expression, t is real time; v is a characteristic thermal velocity for

the diode V ZkT/me; and the quantities ﬁ, X, and T have all been

defined in Chapter III. The average transit time of the ions, expressed
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in terms of normalized time, is of the order of §2 Vv mi/me, where

£, 2
defined in Chapter III). For insuring the possible existence of a

is the length of the diode measured in Debye lengths (é was also
periodic solution in the diode, the value of §2 must be at least 40,

Using this separation distance for a diode, a normalized time interval

of 150 / mi/me should be a meaningful experiment on the computer.

We still have to determine the actual time spent by the computer
calculations for such an experiment. This time naturally depends upon
how many times the positions of the sheets are recalculated during a
complete computer run. The longer the time that elapses between time
steps (Aﬁ), the less time is spent by the computer for a particular
experiment., The duration of a time step cannot be increased without
limit, however, for the accuracy of the computer model depends upon
the fact that this quantity is kept small. In order to determine how
small AT should be, we have to find a time interval that charac-
terizes the fastest particles in the diode. We take the average plasma
period of the electrons as this characteristic time interval, and make
certain that the positions of the sheets are recalculated at least a
few times within one electron plasma period. The average plasma period

can be estimated by the characteristic electron plasma frequency

— - 92 —
mpe = / N e /€0 me. Using this wpe, the average electron plasma period

in a normalized form is

Tpe=zJ2_‘nz9

Hence a normalized time interval of unity means that the positions of
the sheets are recalculated nine times during Tpe’ which should be
sufficient for our model, We have also found that if we choose AT
smaller than unity, it does not influence the results of the computer
calculations,

We have already mentioned that when the full capacity of the IBM
7090 is used (an average of 10,000 sheets within the diode space), the

computations for a time step take less than 2 sec. Hence, 2°¢150
/mi/me sec, or approximately 5 /mi/me min, are sufficient for a
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complete computer experiment., It is evident that the value of the ion-
to-electron mass ratio in the computer model must be chosen much

smaller than it is in reality; however, we will show later that the
hypothetical values of 1, 4, 16 for mi/me clearly demonstrate the
effect of this mass ratio on the results. Hence, by calculating computer
runs for these values, one can predict the behavior of the diode for
larger mass ratios also. Consequently, the longest computer runs take

20 min computer time, a short enough time to prove the computer model

highly practical and economical.

A. PARAMETERS OF THE COMPUTER DIODE

The parameters of an opposite-stream diode were selected such that
it could support both the basic and some periodic solutions. We had to
keep the length of the diode as short as possible in order to save
computer time, for the relaxation time of the diode depends on the
transit time of the ions. Choosing the diode to be 40 Debye lengths
long satisfied all the required conditions, and we did not have to
choose different diodes for the various computer experiments performed.

For simplicity's sake, the temperatures of the emitters were set
equal (B = 1). This choice did not introduce a symmetry into the
computer calculations because the saturation current densities of the
electron and ion emitters were different, even for equal masses of
ions and electrons. The dc parameter (& that determines this ratio
was chosen to be 1.5.

The applied potential across the diode determines whether periodic
solutions could exist in principle in the diode. The diagrams pre-
sented in Appendix C answer this question for an arbitrary potential
value. We used a normalized potential value nz = 1.6 for our diode.
The transition length associated with our diode is 10. (This was
determined from Appendix C.) The separation length of the diode is 40,
and the value of the ratio is 4. This shows that a periodic solution
with three half-periods could be present in our diode.

The mass ratio mi/me is not an important parameter of the
normalized dc problem, because the dc potential distribution, given

in a normalized form, is independent of this ratio. The normalized

SEL-64-012 - 62 -




dc current, however, depends on the mass of the ions because of the
way it is normalized. Transient phenomena also depend on the mass
ratio. 1In particular, computations showed that the mass of the ions
determines the time interval within which the diode establishes its
equilibrium state, This time interval is approximately proportional
to the square root of the ratio mi/me. In order to keep the computa-
tion time as short as possible, we used the hypothetical mass ratios
1, 4, and 16.

There are two other parameters of the computer model that have to
be determined. One is the length of the time step AT, the other is
the number of electron sheets injected per normalized time Pe' We
used for AT the value 1 throughout our calculations. We have showed
that in this case the electric field and the state of the diode are
recalculated about nine times in every electron plasma period. Trial
calculations with smaller values of AT gave the same results as those
calculated with AT = 1. This showed that the exchange of differences
for differentials introduced only a very small error in the calculation
of the trajectories of the sheets in the diode.

For each computer calculation the electron injection rate, Fe’ was
chosen as large as possible. The memory-core storage capacity of the
IBM 7090 limits the choice of Pe’ for the maximum number of sheets
present in the diode space during a computer run is proportional to
Pe' The choice of this parameter is discussed in the next section.

The parameters of the diode are summarized in Table 3, together

with the corresponding dc currents. The values of these dc¢ currents

TABLE 3. PARAMETERS AND CORRESPONDING DC CURRENTS

Parameter Calculated dc Current

o B §2 T]2 mi/me Jbasic/Jsat Jper/Jsat
1 0.239 0.700
1.5 1.0 40 1.6 4 0,225 0.656
16 0.214 0.625
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were computed by the numerical procedure for the dc states of the diode

described earlier (see Appendixes B and C).

B. FORMATION OF THE BASIC SOLUTION

We want to find the equilibrium state of the computer-simulated
diode and compare it to the dc states. The computer calculations start
with an empty diode and with the normalized potential value, nz = 1.6,
applied across the emitters. During each time step a constant number
of electron and ion sheets are injected into the diode space at their
respective emitter planes. These sheets are moved under the influence
of the electric field that is determined from the combined effect of
the charges in the diode and the applied potential, The number of
sheets in the diode is increasing until there are as many sheets leav-
ing on an average as are injected. When this happens, the diode has
reached its equilibrium state.

No matter what diode parameters we chose for the above calculations,
the diode always settled down to, and its equilibrium state agreed with,
the basic dc solution. During these calculations the current through
the diode was recorded at each time step. The value of the current vs
normalized time is shown on Fig. 16 for the diode parameters of Table 3,
and with mi/me = 16. When a smaller mass ratio is used, the diode
reaches its equilibrium state in a shorter time, but otherwise there is

no difference in its behavior.

Jdiode _
b T pasic VOLTAGE SOURCE: n,° 1.6
Mg =16
o1 e
NORMALIZED
TIME
! 1 ! ! 1 ! 1 L 1 | I
i 1 ] 1 ' 1 4 L] 1 1 bl
0 100 200

FIG. 16. FORMATION OF THE BASIC SOLUTION IN
THE COMPUTER-SIMULATED DIODE WHEN AN IDEAL
VOLTAGE SOURCE IS CONNECTED ACROSS IT.
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There are naturally fluctuations in the value of the current, for
the velocities of the sheets are randomly distributed. The fluctua-
tions in the potential of the diode show up most prominently in the
values or positions of the potential extrema. It is well known that
these points (the potential minimum and maximum) are the most sensi-
tive for any disturbance in the diode. In order to show that these
fluctuations are only shot-noise effects, the values of the potential
minimum were recorded at each time step for computer calculations with
different numbers of sheets. The number of sheets in the equilibrium
state of the diode is determined by Pe’ the injection rate of the
electron sheets. For three different values of Fe’ the variations in
the potential minimum as functions of time are shown on Fig. 17. The
mass ratio of 1 was used for these computations, The standard deviations
(STDE) of the potential minimum were calculated for the three cases
after they reached equilibrium. (See Fig. 17.) The results show that
the standard deviation of these fluctuations decreases when T' is
increased, and it is approximately proportional to 1/fo;T- Since
Pe is proportional to the average number of sheets in the diode, this
result agrees with the statistical law that holds for the standard
deviation of fluctuations about the mean of uncorrelated events. In
our case, the events are the positions of the charged sheets. These
are randomly distributed in the diode and uncorrelated because of their
random injection. Consequently, the fluctuations of the computer-
simulated diode are only shot-noise effects, and the average behavior
of the diode agrees with the basic solution that was calculated by a
dc theory.

With the circuit equivalent of the computer diode, it is possible
to observe the diode's behavior when an external circuit, different
from an ideal v agc u , is connected to the diode. Let us assume
that an ideal current source, with the current value of 0.3 time; the
saturation current of the diode, is connected to the terminals 0f the
circuit shown on Fig. 15. The calculations start with an empty diode
and with no potential difference across the emitters. During the first
time steps, because there are only a few sheets present, the convection

current through the diode is only a very small fraction of the saturation
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THE VARIATION OF THE POTENTIAL MINIMUM
THEORETICAL DC VALUE 7, = —1.6l
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FIG. 17. FLUCTUATION OF THE POTENTIAL
MINIMUM IN TIME FOR THE BASIC SOLUTION,
Increasing I' means increasing sheet
concentration®in the diode.

current; therefore, the major part of the total current has to flow
through the cold capacitance of the diode (see Fig. 15). The voltage
across this capacitance changes at each time step by the amount
AI/Cd, where J . is the current density in the capacitance,

8)
disp disp
and C is the capacitance per unit area between the two emitters.

d
The direction of this current is such that the ion emitter becomes
positive with respect to the electron emitter, thus giving a forward
bias to the diode and causing the convective current to increase.
Since the current through the diode is constant, the increase of the

convective current causes the displacement current to decrease until

equilibrium is reached. The voltage vs time characteristic of this
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circuit is shown on Fig. 18. The parameters of the diode are the same

as the ones used before. The equilibrium state agrees again with the

dc calculated basic state,

J

) CURRENT SOURCE - 33%91 =0.3

"boslc mi sa

/me = 16

*1 \_/ —

/ NORMALIZED

TIME
—t—t—t—f

!
O 100 200

FIG. 18, THE RESULTS OF THE COMPUTER-
SIMULATED DIODE: The formation of the
basic solution with an ideal current
source connected to the diode.

We can conclude that the basic solution is a stable solution
under time-varying conditions, when either a voltage source or a current
source is connected to the diode. From the quantitative agreement
between the time-dependent and the dc states of the diode, it is apparent
that the computer model is a very good statistical approximation to the

theoretical model of the opposite-stream plasma diode.

C. THE BREAKDOWN OF THE PERIODIC SOLUTION

We know from dc theory that the periodic solution is a self-

consistent dc solution of the opposite~stream diode., It is true that
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in the already described computer calculations only the basic solution
was present; still, we have to examine the stability of the periodic
solution in order to tell whether it could exist in the diode for a
considerable length of time. Using the dc theory and the computer
program of the dc states, we can accurately calculate the electric
field of the periodic solution as a function of position in the diode.
If this dc field is used to move the sheets in the diode, then these
sheets will be forced to follow the trajectories that the dc theory
predicts. Consequently, after the equilibrium state of the diode has
developed under these circumstances, the self-field of the sheets must
agree also with the predicted dc field. By this procedure the self-
consistent periodic state is set up in the diode. This procedure was
carried out on the computer model utilizing the fact that the sheets
could be moved by a prescribed field (see Fig. 12). The prescribed
field, i.e., the field of the periodic dc state, was calculated by
numerical integrations (see Chapter IV) and its values at the midpoints
of the segments fed into the computer program. These values were then
used to move the sheets in the diode instead of the calculated self-
field of the sheets,

After the self-consistent state has been achieved, the diode may
now be allowed to arrange its state by its normal operation, i.e.,
the sheets may be allowed to move under the influence of their self-
field. We are interested in the behavior of the diode after its normal
operation has begun; therefore, we count time from the instant when the
sheets start to move under the influence of their self-field.

It seemed possible that an external circuit could influence the
stability of the periodic solution; therefore, both an ideal voltage
source and an ideal current source were used for these calculations.
The voltage source was simulated, as before, by the application of a
constant potential value (nz = 1.6) across the emitters. The periodic
dc solution was set up for this potential difference, and then the
sheets were allowed to move under the influence of their self-field.
We could observe that the periodic solution changed rapidly into the

basic solution under these circumstances.
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Since the diode current of the periodic solution is higher than
that of the basic solution for the same potential difference, the
current vs time diagrams on Fig. 19 show this change clearly. These
curves are shown for three different mass ratios. The heavier the mass
of the ions, the longer it takes for the current to reach its basic
dc value. This long time effect is connected to the normal transient
behavior of the diode that is determined by the average transit time of
the slower particles. We have already shown that the average normalized
transit time of the ions is of the order of 40 ,/mi/me. This indicates
(see Fig. 19) that the current reaches its basic value within a time

interval not larger than three times the average transit time of the ijons.

VOLTAGE SOURCE: 7, =1.6
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FIG. 19. THE BREAKING UP OF THE INITIALLY
SET UP PERIODIC SOLUTION AS SHOWN BY THE
DECREASE IN THE CURRENT VALUE THROUGH THE
DIODE. Three different mass ratios are used.
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The disappearance of the periodic type of solution, i.e., the
disappearance of the two periodic extrema, occurs in a much shorter
time than the diagrams on Fig. 19 indicate. This fact is demonstrated
on Fig. 20, where the potential distribution of the diode is shown at

different times during the transformation of the periodic solution.

POTENTIAL PROFILES IN THE DIODE
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FIG. 20. THE BREAKING UP OF THE INITIALLY SET UP
PERIODIC SOLUTION AS SHOWN BY THE POTENTIAL PROFILES
IN THE DIODE AT DIFFERENT TIMES.

These curves are shown for the mass ratio mi/me = 16, After 70 time
steps the periodic extrema have disappeared. This short time interval
depends on the electrons and is not influenced by the mass of the ions,
for it is the same for the lower values of the mass ratio.

We pointed out in our dc analysis that at these two extrema the
spatial derivative of the space-charge function is discontinuous.
Consequently, the discontinuities cause instabilities at these points
and the distribution of the electrons is rapidly rearranged. During
this small time interval, the distribution of the heavy ions has not
changed much, and the electron current-limiting minimum is still at
its periodic value. The current even increases initially, because the

excess amount of electrons that has been depressing the potential at
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the periodic minimum then leaves the diode space rapidly at the plane

of the ion emitter,
sheets,

maximum become more prominent.

decreasing of current through the diode.

similarly in the change of the
across a diode that is already
type of profile remains in the

minimum and maximum are taking

After this initial rearrangement of the electron

the nonperiodic profile changes its shape as the minimum and

The consequence of this change is the
This slow time effect occurs
current when the voltage is changed

the basic

in equilibrium. In this case,

diode at all times; only the potential

up different values. This is the

reason why we called the long time effect in the diode its natural
transient behavior.

When a current source is used, it is the voltage across the
emitters that shows whether the periodic or basic solution is present
in the diode.

For the same value of current, the applied potential of

the basic solution is larger than that of the periodic solution. The
potential across the diode as a function of time is shown on Fig. 21.
At time

T = 0, the periodic solution has already been set up as in

the earlier cases. From this time on, the current is held constant

and the potential across the emitters is allowed to change. The
change in the potential at each time step is determined by the displace-
ment current in the diode with the assumption that this displacement

current is zero initially,

7, Jdiode
} Toaas cuaaeg;.souacs. T -0.653
I/me = 4
+ 1

NORMALIZED
nper -——|\|_‘I/| | 1 } $ i TIvE —
1 T T T i T T T T 1 Lol
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FIG. 21. THE BREAKING UP OF THE PERIODIC
SOLUTION (WHEN AN IDEAL CURRENT SOURCE IS
CONNECTED TO THE DIODE) AS SHOWN BY THE
INCREASE IN THE DEVELOPED POTENTIAL ACROSS
THE DIODE,
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The diagram on Fig. 21 shows that the periodic solution changes
again into the basic solution. The disappearance of the periodic
extrema is not influenced by the external circuit, for it again takes
approximately 70 time steps. This result is consistent with our
earlier explanation of the transformation of the periodic solution,
since this transformation is not connected to the normal transient

effects of the diode but t

o 3
....... - [ 9459 o111l

influenced by an external circuit.
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VII. THE EXPERIMENTAL OPPOSITE-STREAM PLASMA DIODE

Experimental data supply the most conclusive proof of a theoretical
analysis that predicts the behavior of a physical device. The “experi-
mental" results of the computer-simulated diode have already given us
proof that the theoretically calculated, basic dc solutions are stable
under time-varying conditions, hence their existence in a physical
device can be expected. The agreement between theory and experiment
depends on how well an ideal theoretical situation can be materialized
in the laboratory. The theoretical model of the opposite-stream diode
was well suited for our experiment inasmuch as a thermionic ion emitter
was available to the Electron Device Laboratory (a thermionic electron

emitter is the most commonly used component of laboratory experiments).

A, CONSTRUCTION OF THE DIODE

The two major assumptions of our theory are one-dimensional flow
and collisionless conditions. A parallel-plane construction of the
diode is a good approximation to a one-dimensional model only if the
separation of the emitters is smaller than their area, so that the
effect of the fringe fields can be neglected. The collisionless condi-
tions are realized by a low background pressure of neutral atoms and by
keeping the separation distance of the diode much smaller than the mean
free path of the particles, Consequently, our aim is to keep the
distance between the emitters as short as possible.

The design of the diode is determined by the available form of the
ion emitter. The constructien and the properties of the lithium-ion
emitter, called the "spodumene button," are described in great detail
in reports of the Stanford Electronics Laboratories. (See pp. 1I-33 and
I-41 in Ref. 21; and Ref. 23). The basie material of the ion emitter,
spodumene, is a glasslike material that emits 1lithium ions when heated
above 900 °C., The maximum safe operating temperature of this emitter
is 1200 °C. The emitter is cylindrically shaped, with the emitting
surface ground flat, Heating is provided by a zigzag platinum wire that
is imbedded in the spodumene., The heater wire is running back and

forth in a plane that is parallel to the emitting surface and placed at
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the middle of the cylindrical button (see Fig. 22). The diameter of a

button is typically 0.3 in.; its length is approximately the same.

In the spodumene buttons used in our experiments a second zigzag
wire was also imbedded in the material near the emitting surface. The
exposed ends of this second wire were welded to a cylindrical heat shield
which surrounded the button, The inside diameter of the heat shield was
0.375 in, Electrical contact to the emitter was made by the imbedded
second wire through the heat shield.

Since the diode has a parallcl-plane constiruction, the surtace
areas of the electron and ion emitters have to be equal. In order to
insure a uniform field distribution in the diode, the emitters were
similarly constructed (a cylindrical emitter surrounded by a heat
shield). The separation between the emitters was 0.1 in. This gave a
ratio of 3:1 between the diameter and the length of the diode, which is
a reasonably good approximation to the one-dimensional model.

At this small distance from the spodumene button, a pure metallic
electron emitter could not be used because the radiation heat from it
would have melted the face of the button. Hence, it was necessary to
use an oxide-coated cathode. This cathode, a cylindrical cup, was
pressed out of a 0,005-in,-thick, pure nickel sheet. It was 0.5 in.
long and had a diameter of 0.27 in, The bottom of this cup was sand-
blasted and sprayed evenly with barium-oxide cathode coating. The cup
was heated from inside by a heavy tungsten heater that was insulated
from the emitter by high-purity alumina parts (see photograph of the
heater assembly in Fig. 23). The emitter was supported at the back by
a stainless steel band to which the heat shield was also welded,
Electrical contact to the emitter and to the heat shield was made
through this steel band.

The use of an oxide~coated cathode for the electron emitter created
two difficulties. First, the cathode had to be activated, and during
the activating procedure the ion emitter had to be shielded from it.
Secondly, the applied voltage across the diode had to be limited, since
oxide cathodes are poisoned easily by ion bombardment. It was found

by earlier experiments that noticeable poisoning sets in when 20 v is
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FIG. 23. HEATER ASSEMBLY FOR THE INDIRECTLY
HEATED, OXIDE-COATED CATHODE.

applied across the emitters. Consequently, during those experiments
which are reported here, the applied potential had to be kept below
this value.

The ion emitter has to be shielded during the activation of the
cathode because gases released from the surface of the electron emitter
would deposit on the button and influence its electrical characteristics.
Also, it is a good practice to draw a large electron current from the
cathode during and immediately after activation, for this stabilizes the
emission properties of the cathode. Both these functions can be executed
by a metal disk that is placed in the diode space during activation.

It is a slight technical problem to construct the shield in such a way
that il can be removed trom the diode space after activation, since the
diode is placed in an evacuated bell jar during its operation. We used
a 0.001-in.-thick circular disk with 1 in., diameter that could be
rotated into the middle of the diode space by a thin rod (see photograph
of the diode in Fig. 24). The crossbar at the end of the rod was made
of magnetic material; and the disk could be rotated in and out of the
diode space by a powerful magnet placed outside the bell jar. The

magnet was removed, naturally, when the measurements were taken.
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FIG. 24. PHOTOGRAPH OF THE EXPERIMENTAL
OPPOSITE-STREAM PLASMA DIODE WITH THE
SEPARATING DISK REMOVED FROM THE DIODE
SPACE. The electron emitter is at the
left, opposing the ion emitter. Both
are surrounded with heat shields.

B. THE EXPERIMENT AND ITS RESULTS

The diode (Fig. 24) was placed in the bell jar of a vacuum pump
station. Continuous pumping with a diffusion pump provided an indicated
pressure of 10_7 mm Hg. Though the pressure in the diode space was
probably higher than at the point where the pressure gauge was placed,
the difference was less than two orders of magnitude. The mean free path
of the particles at 10-5 mm Hg is still of the order of 10 cm, hence
the separation distance of 0.25 cm insured collisionless operation.

The experiment began with the aciivailion of the cathcde. The
temperature of the nickel cup was raised slowly up to 1050 °C, while
the separating disk was kept in the diode space. The cup was at ground
potential, and during activation 20 v was applied to the disk. The
temperature of the electron emitter was raised so slowly that the

-6
pressure in the bell jar could not rise above 5 x 10 = mm Hg. After

holding the temperature of the emitter for 10 min at 1050 °c, it was
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lowered to 900 °C. The temperature of the electron emitter was held
at this value for the later part of the experiment, Before data were
taken, the potential of the disk was set to a value that yielded 20 ma
electron current. The activation of the cathode was completed by
continuously drawing this current from the emitter for several hours.

When the voltage-current characteristics of the opposite-stream
diode were measured, it was necessary to use pulsed measurements in
order to eliminate a potential difference between the second zigzag
wire and the face of the ion emitter button. Under dc conditions, this
potential difference was drifting slowly in time which made it impossible
to obtain consistent data. The probable cause of the drifting of this
potential difference is the depletion of lithium in the spodumene button.
This subject is currently under investigation at Stanford.

Pulses with 10-usec duration eliminated this difficulty. The
transient effects in the diode could be neglected for these measurements,
for the average transit time of the ions was only a small fraction of a
microsecond. The voltage range of these pulses extended from O to 15 v.
The current pulses were measured across a l-ohm resistor by an oscillo-

scope.

1. Determination of the Effective Area of the Diode

Our purpose is to show that the basic solution is present in the
experimental opposite-stream diode by comparing the current in the
diode with its theoretically calculated values. The dc parameters of
the diode are determined as follows. The separation distance, the
temperature of the emitters, and the applied potential across the diode
are measured; the saturation currents of the emitters are estimated.
Since the electron and ion currents in the diode are much smaller than
the saturation currents of their respective emitters, even a large
error in the saturation current of either emitter would not influence
the calculated dc current. The dc parameters above determine the
theoretical current density in the diode for the basic solution. 1In
order to convert current density to current, we need to know the cross-

sectional area of the diode.
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The oxide-coated surface of the nickel cup has an area of 0.37 cmz.
The effective area of the emitter is larger than this value, because
electrons fill up the space between the cup and the heat shield. Since
the cup is welded to the heat shield, and the difference in the work
functions of the oxide coating and the heat shield biases the heat shield
positive, electrons will flow to the heat shield from the emitter. When
potential is applied across the diode, electrons leave their emitter not
only from the oxide surface but also from the space between the emitter
and the heat shield. The low current that flows in the diode is
associated with a large space-charge cloud of electrons near the electron
emitter, hence the space charge and this cloud around the nickel cup
increase the effective area of the emitter. It follows from this argu-
ment that the effective area of the emitter is smaller than the area
that is enclosed by the heat shield (0.678 cmz).

The effective area of the electron emitter could be determined
from the calculated dc current density and the measured current that
flows between the separating disk and the electron emitter. When the
potential of the disk was 10.2 v, the electron current through this
short electron diode was 2.43 ma. The contact potential was approximately
lv (see next section for details about contact potentials), hence the
true applied potential between the emitter and the disk was 10.2 - 1 =

9.2 v. The other dc parameters were:

Temperature of the electron emitter: Te = 1170 °K
Separation distance: d = 0.142 cm

2
Saturation current density (assumed): JSe = 0.1 amp/cm

The theoretical dc current density of an electron diode with these
parameters is 4,76 ma/cmz. (This figure was calculated by the gomputer
program of the dc states.) Hence the effective area of the electron

emitter was:

2.43 ma - 0.51 cm2

A =
eff 4,76 ma/cm
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This figure was used not only for the area of the electron emitter, but

also for the effective area of the experimental diode, since the two

emitters were similarly constructed and we could assume that our diode

approximated a one-dimensional model.

2. Determination of the Contact Potential

The contact potential in an experimental diode is the difference
between the potential that is applied across the terminals of the
device and the potential that actually acts on the charged particles
in the diode space. This difference is caused by the dissimilar work
functions and mass constants of different emitting materials, by thermo-
electric effects and by contact potentials between metals and semi-
conductor types of materials. Our theoretical data are calculated for
the actual potential difference between the emitters, or between the
electron emitter and the metal disk; therefore, for each measurement
the applied potential had to be corrected by the value of the contact
potential., We can express the exact relationship between the applied

and true potential in the diode by the following expression:

Vo = Vappl = Veont (78)
where V2 is the true potential across the diode, Vappl is the
potential applied across the terminals of the diode, and Vcont is the

contact potential by definition,.

The relationship J = £(v,) was calculated by numerical

diode 2)
integrating methods (see Chapter IV) for the basic solution. We assume

that the experimental curve follows the same law, i.e.,

(v

J
exp appl

) = £(v -V ) (79)

appl cont

where V is a constant, The value of V
cont cont

fitting the experimental curve to the theoretical curve at the point

is determined by

V2 = 0, The theoretical curve gives a current value for V2 = 0, which
is Jdiode(o)' When the contact potential is applied across the
terminals of the diode, the current across it is Jdiode(o)’ or

SEL-64-012 - 80 -




Vcont - Vappl
(80)

A
Jexp(o) = Jdiode(o)

3. The Corrected Experimental Data

a. Measurements of the Electron Current Only

We have shown already that the experimental curve for the
electron diode was fitted to the theoretical curve at 9.2 v true
potential across the diode. The two curves are fitted also at zero
applied potential when the contact potential for the electron diode is
determined. The theoretical short-circuited electron current between
the oxide cathode and the separating disk was 110 pa. In order to
obtain this current value, the separating disk had to be at 0.98 v with
respect to the electron emitter. According to Eq. (80), the contact
potential for the electron diode was 0.98 v,

Other points between O and 9 v were determined both by the
experiment and by numerical computations. One of the solid lines on
Fig. 25 is the theoretically predicted voltage-current characteristic
of the electron current only. The experimentally measured points follow
closely the theoretical curve, showing that our assumptions that the
diode is collisionless and one-dimensional are well approximated in this

voltage range.
‘ b. Measurements on the Opposite-Stream Diode

In order to measure the voltage-current characteristics of the
opposite-stream diode, the separating disk was removed from the diode
space and the spodumene button was heated to 900 °C. Pulses of 10 psec
were used with 60-cycle repetition rate for the measurements. The shapes
of th urrent and veltage pulses were identical and there was no delay
time between them. This fact showed that the transients in the diode
died out within a fraction of a microsecond,

The effective area of the opposite-stream diode was assumed to
be the same as that of the electron emitter because of the similar
constructions of the two emitters. On the basis of earlier measurements

of the saturation current of the spodumene buttons (see Ref. 23), we
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FIG. 25. THE EXPERIMENTAL DATA. (Solid lines are theoretical curves. )

2
assumed an ion saturation current density of 10 ma/cm . Hence the dc

parameters of the diode were the following:

Temperature of electron emitter: Te = 1170 °K
Temperature of the ion emitter: T, = 1170 °K
Saturation current density of 9
the electron emitter (assumed): Jse = 0.1 amp/cm
Saturation current density of 2
the ion emitter (assumed): Jo, =10 ma /cm
Separation distance: d = 0,302 cm

2
Cross-sectional area of the diode: Aeff = 0.51 cm

-5
Mass ratio: m /m. = 7.93 x 10
e/ i
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The voltage-current characteristics of the opposite-stream diode, with
the above dc parameters, were computed by our dc theory. The resulting
curve is shown as a solid line on Fig. 25.

The contact potential of this opposite-stream diode was
determined again following the procedure outlined in Sec. B2 above.
The theoretical short-circuited dc current for this diode was 159 pamp.
In order to obtain this value 4.3 v had to be applied across the terminals
of the diode, hence 4,3 v was the contact potential in this case.

The true potential across the diode was corrected (see Eq. (78))
again for each measurement, and the experimental points plotted on
Fig. 25, Measurements were taken up to 18 v applied potential, i.e.,
13.7 v corrected potential. The experimental data follow the theoretical
curve remarkably well., Since the experimental curve is fitted to the
theoretical curve only at the point of zero potential (this point is
at -« on the diagram), the results of these experiments prove
unquestionably that the basic dc solution is present in the diode. No
sign of instability, or increased current value was found. The close
agreement between experiment and theory shows also that our experimental

device was successfully approximated by our theoretical model.
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VIII. CONCLUSIONS

We started the analysis of the opposite-stream plasma diode with
an attempt to find all dc solutions that were consistent with our model.
In order to prove the existence or nonexistence of different dc states
in our diode, we had to find a rigorous mathematical treatment for this
problem. We have found such a treatment by introducing symbolic functions
into the solutions of our differential equation. 1In the process of
solving our problem we found the three forms of the velocity distribu-
tion functions that could be applied to the general four-stream plasma
diode. In future analyses these forms might help to find all possible
dc states of the general case, though this work will require considerably
more effort than we needed in applying our methods to the opposite-
stream diode.

We have found all the possible dc states of the opposite-stream
diode and have shown that a fundamental dc solution (the basic solution)
always exists in our model. A numerical program was constructed that
could accurately calculate the dc states of an arbitrary opposite-
stream diode.

It was found that periodic types of potential functions could also
exist as dc solutions to our opposite-stream diode. We presented
diagrams from which the existence or nonexistence of these periodic
solutions could be determined.

We found a clue to the question of stability of the dc states when
we observed that the spatial derivative of the space-charge function
became discontinuous for the periodic types of dc solutions. Up to the
present time, authors have neglected to point out the importance of the
derivative of the space charge in several papers that dealt with the dc
states of various plasma diodes (see Refs. 6-10). The continuity or
discontinuity in the derivative of the space-charge function is deter-
mined by dc analysis; therefore it should be required that this
derivative be continuous whenever stable dc solutions are sought.

The stability of the dc states was checked by simulating the model
of the opposite-stream diode on a computer. We have developed a computer
program that is able to handle 10,000 sheets simultaneously. Because of

the large number of sheets in the computer-simulated diode, this program
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represented a good statistical model of a physical device and its
equilibrium state agreed with the theoretically calculated basic dc
state of the diode.

The computer model also showed that discontinuities in the deriva-
tive of the space-charge function made the periodic types of dc solutions
highly unstable. This result confirmed the conjecture that this
derivative plays an important role in the stability of dc states; it has
to be continuous when the state is stable.

We have also constructed an experimental opposite-stream plasma
diode, using a solid-state, thermionic, lithium-ion emitter (spodumene)
and a barium oxide-coated electron emitter. Since the contact potential
between the emitters was not known, the experimental data had to be
matched to the theoretical curve at one point. We selected the value
of zero applied potential for this point and obtained excellent
agreement between experimental and theoretical data for other values of
the applied potential, These measurements demonstrated that the basic
dc solution was set up in the experimental diode and that our theoretical
dc analysis, including the necessary stability considerations, had
correctly predicted the behavior of the physical device.

There are great possibilities in applying the computer model to
other types of one~dimensional plasmas, because it can be made suitable
for a large variety of boundary conditions without essential changes
or complications in the computer program. The data obtained by these
computer "experiments" describe every physical aspect of the model. We
extracted only those data which were relevant to our theory, but future
applications of the computer program could include impedance measurements,
wave propagation and other desired physical properties of one-dimensional

plasmas,
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APPENDIX A. DESCRIPTION OF THE COMPUTER PROGRAM
FOR THE DC STATES

In Sec. D of Chapter III, we outlined the procedﬁre for calculating
the dc characteristics of an opposite-stream diode from its known param-
eters. Since this procedure consists of numerical methods and logical
operations, it is well suited for digital computers. We have used
Burrough's algorithmic language to write a computer program which per-
forms all the required functions of this procedure.

In the problem considered, the following seven parameters of the
diode are given: Jsi’ J , T., Te’ \' d

se i 2’ '

parameters we have to calculate V . |, V
min ma

potential function in the diode completely. If V . and V are
min max

and mi/me. From these
, which then determine the
known, any quantity related to this diode can be calculated.

It was shown in Chapter III that the solution of this problem

breaks down into two steps:

1. Determining the applicable potential type for the problem, and

2. Setting the parameters of this potential form such that the total
separation distance calculated from three integrals agrees with
the given separation distance d.

1. The Normalization Procedure

It is convenient to use the normalization procedure of Chapter III
to reduce the number of input parameters. If we assume that the current
densities are given in amperes per centimeter squared, the temperatures
in degrees Kelvin, the potential in volts, and the distance in centi-
meters, the constants of the problem can be calculated by the following

expressions:
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2. Subroutines of the Program
In order to find the normalized transition lengths EA and
max

&
min

G (x), G'(x) and the integral procedure.

a. The Functions G (x), G (x)

The funciion G {x) was dcfined by Egq. (22):

G (x) = exp (x) » (1.0 - erf v@:) +
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we need to use two subroutines, These are the functions
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It is not possible to use the above expression for the numerical
evaluation of G-(x) because cancellation occurs for x values larger
than 2.0. We have used a power series to approximate G (x) for
0 £ x £ 2,0, and an asymptotic series for x > 2.0. We have matched
the two series at x = 2,0 so that G_(x) is continuous at this point,
The error of this approximation is smaller than 0.1 percent. The
numerical values of the two series are listed in the text of the BALGOL
program (see Appendix B).

The function G+(x) can be expressed by the functions G—(x)

and exp (x) as follows:
G+(x) = 2.0 exp (x) - G_(x) (A.3)

b. The Integral Procedure

We showed in Chapter III that the separation length of the
diode can be calculated by three definite integrals [see Eq. (36)]. The
integrands involve the G (1) and G'(n) functions and the three param-
eters, nm, qM and 7y, which have to be determined before the integration
can be carried out. For the potential types B, C, and D, the value of
7 1is fixed such that the integrands approach infinity when the variable
approaches the limits of the integration,

Since the subroutine for calculating separation lengths is used
many times in the program, the method of calculating definite integrals
of the types shown must be efficient and accurate. Gauss's three-point
quadrature formula is used for the integration procedure [Ref. 24].

In general, we have to evaluate an integral expression of the

form:

const

fx) » ——— as x > A
B x - A
j. f(x) dx when (a.4)
A
£(x) > —const as X > B
B - x
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Gauss's three-point formula is

B

.f f(x) dx = (B - A) e f{Ax, + B(1.0 - xl)]‘
A

1

+ c f[Ax

o + B(1.0 - xo)]

0

+ ¢ £(a(1.0 - xl) + Bxl] (A.5)

When f(x) is a smooth function,

0.27777778

(¢}
Il

0.44444444

(e]
1l

x, = 0,88729833

Despite the fact that the points x = A, x = B are avoided, the result
is still accurate for smooth functions. 1In our case, we have to trans-
form the variable of the integral to eliminate the singularities of
f(x) at the end points. As we shall show, this transformation will

only change the values of X and x

‘1 % %1 0
We can use the transformation,

X = + A sin y (a.8)

Substituting Eq. (A.6) into the integral expression, we get

B ) /2 .\ }
l; f(x) ax = B > A .[:/2 [f(B 3 A,E > A gin y) cos y] dy (A.7)
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We define ¢(y) as

o(y) = f(B ; A,B ; A sin y> cos y (A.8)

The function ¢(y) is not singular at either end point; therfore we

can use Gauss's formula for this function. This gives

T 7
¢y ¢[§ X -5(1.0 Xl)]

] /2 ]
j; f(x) dx = B 5 A ~[n/2 o(y) dy = B 5 A

b1 LS b LS
+ <, ¢ [5 X0 "3 (1.0 - xo)] + ¢y ¢[§ (1.0 - Xl) -3 x1”

(A.9)
Equation (A.9) can be simplified:

B

[ t(x) ax = B2
A

7 b1 1
clmlnxl - 5] + co¢[ﬂxo - 2] + c1¢[2 ﬁx1”(A.10)

‘ i . (A.10
cl, CO’ xl, XO into Eq (A 1 ), we

can find the required expression for the function f(x) by using Eq.

After substituting the values of

(A.S). The new formula will be

/~ f(x) dx = (B - A) cif[AXi + B(1.0 - xi)]

1 - [ _ [ '
*+ < f[AxO + B(1.0 xo)] + cif[A(l xl) + BX1]

(A.11)
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where

ci = 0,15128136
c6 = 0,69743728
x; = 0.03101407
xb = 0.5

The integral expression in Eq. (36) is divided into three
regions. Each of the three regions is divided into "N" equal intervals,
and in every small interval we applied the derived three-point formula.
The number of these small intervals depends upon the accuracy desired.*
The sum of these partial integrals gives the total integral; or, if we
wish, these partial integrals can be used to read out a tabulated form

of the potential as a function of distance.

3. Determination of the Type of Potential Solution

We follow the procedure described in Sec. IIID to calculate the
normalized transition lengths of a given diode. First we evaluate
Eq. (38) which determines whether the diode is electron-rich, ion-rich,
or neutral. Hence, depending on the value of the expression in Eq. (38),
the transition lengths are ¢
3 and ¢

AC CD
To calculate any one of these transition lengths, we have to determine

T Ty

integrals in Eq. (36). For the cases ¢£

AB and EBD for the electron-rich case,

for the ion-rich case, and gAD for the neutral case.

and ¢y for the case in question and then evaluate the three
AB’ gAC' and gAD, the calculation
of n_, Mye and 7y consists of evaluating the expressions given in

1 in
Table 1 of Chapter III. Since only one of these three transition cases
can be present in the given diode, we set the other two transition

lengths equal to zero. Then, in general, gA = gAB + gAC + éAD'
max

*
We used N = 15 and obtained results with four-digit accuracy.
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For the determination of the transition lengths éBD or gCD, the

three parameters nm, nM, and 7y have to be calculated again. Table 1
indicates that we have to use an iteration procedure to find nT from
an equation of the form 17, = f(nT), i.e., Egs. (41) and (42). We know

that nT > nz, hence we can form the following sequence:

py T

‘g

(A.12)

Ir(ne1) T f[qT(N)]

where the function f(nT) is given by Eq. (41) for the B-D transition
case, and by Eq. (43) for the C-D transition case. The factor nT(N+1)
is a solution if the error, i.e., the absolute value of the difference

nT(N+1) - nT(N)’ is less than a prescribed small positive number. In

general, we set the error less than some percentage of the difference

gl In all the examples that we have calculated, this itera-

- '(] R
T(N+1) 2
tion procedure converged in five steps.

When is known, the parameters nm, HM’ and 7y can be calculated,

I
T
using the corresponding expressions given in Table 1. We evaluate Eq, (36)
again and thus determine gBD for the electron-rich diode and ECD for
the ion-rich diode. Setlting that transition length equal to zero, which

does not apply to the given diode, we calculate ¢ . by the sum

D

min
ED o= EBD + gCD + gAD' After the values of §A and gD '
min max min

known, the determination of the type of the potential function is possible.

are

If §2 > §D , type D has to be used for the solution. If §, < £y

min max
the type A solution is applicable. Finally, if < g, < &y
max min
type B or type C is the right potential form depending on whether the

Ea

diode is electron-rich or ion-rich.
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4, Determination of the Inside Parameters of the Solution

It was shown in Sec. IIID that once the type of potential function
is known, there is a one-to-one correspondence between qT or vy and
the value of Eq. (36), which is the calculated separation distance of
the diode. We have to use the method of successive approximations to
find the right value of the independent parameter for a given separation
distance §_. For each potential type the problem is equivalent to

2

finding the root x = x0 for a given Yo

where f(x) is a function which cannot be inverted. Even though the

in the equation yO = f(xo),

four types of potential solutions have different functional forms, we
can choose the variables x,y in such a manner that the function f(x)
is monotonic, nonnegative, and starts at the origin. We have to con-
sider three different cases in order to choose the variables x,y for

the four types of the potential function.
a. Type A Solution

For a type A potential function, only 5 can change, and
nm = 0, nM = Ng- Table 2 shows that there is a lower limit on . If
we call this limiting value Ymin’ the variable x is defined by the

expression

- (A.13)
7 7min
When x approaches zero the separation length approaches zero also,

since ¢y must approach infinity. Consequently, we can set the variable

y equal to the calculated transition length.
b. Type B and Type C Solutions

The variable parameter is nT for the type A and B solutions.
The calculated separation distance is always larger than that of the

transition case, ¢§ which was calculated in the first part of the

A ’
max

program. In addition, nT Z_nz; and nT becomes equal to only at

.
I
the transition point. If we denote the integral expression that cal-

culates the separation length for type B or C solutions as IB C(nT),
’
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2

our variable x becomes x nT - nz and y is given by

y =1 ¢ (x) = I ¢ (np) - &,
max

c. Type D Solution

The procedure used in the type D solutions is similar to that
used in each of the other three cases. For the type D solution,

éz 2_§D . The factor Mo is always larger than the value that
min
corresponds to the B-D or C-D transition case. We had to calculate

I

this nT in the first part of the program, If we call this value of

JAN

WT, nT , then x 1is defined as x = nT - nT . The function

min min
y = £ (x) is defined by the expression y 2 I.(x)-¢ where I_(1,)

D D D . ' D''T

min

is the integral expression for the type D solution. Again we have to
find the root XO for the equality y0 = fD(xO) where y0 is given
and fD(x) is a monotonically increasing function of x starting at

the origin.

d. Finding X for the Equation Yo = f(xo)
The monotonic function y = f(x) and its value y0 are given,
To find the root XO’ we start with a trial value of x, called xtry

t i . s
and calculate the corresponding value of y, called ytry If ytry doe

not differ from yO more than a prescribed percentage of Yo? we have

obtained the solution. From the value of Xtry we can calculate nT
and all the other inside parameters of the diode. However, we cannot
expect to find the right Xtry at the first trial, therefore we want

to find a new trial point which is closer to the desired solution than
the point obtained before. We have written a subroutine called
"CORRECT" which supplies the new trial point in a systematic manner.

After entering into CORRECT, we calculate the new y for the given

try

X and test this to see if it is sufficiently close to Yo-

try ytry
If the agreement is not close enough, we enter in CORRECT again, and
follow this sequence until an acceptable solution is obtained.
Subroutine CORRECT consists of two methods which are commonly
used for finding roots of equations. One method is linear interpolation

or extrapolation, the other method is interval-halving. The linear-
interpolating method can be described as follows.
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Two points are obtained on the curve y = f(x), and two cases

are possible:

1. One point is at the origin and the other is below the root
that has coordinates (xl, ylL

2. One point is above the root with coordinates (x , yz) and
the other is below the root with coordinates (xl, yl).

The conditions on the coordinates of these points are y1 < y0 < yz,
which implies that xl < X < Xy We can obtain these points in the
subroutine from the current trial point which has coordinates xtry’

y . If the trial point is below the root, i.e., < Yor Ve set

try
Xlzx y ¥

ytry
1= ytry’ and proceed with the determination of the new
trial point. If the trial point is above the root, ytry

X2 = Xtry’ Yo = ytry’ and calculate the new trial point from the values

of x

> yO, we set

1’ yl, X5 and Yo- If during the iterating process we find no
trial points above the root, we have values only for (xl, yl). In
this case we extrapolate from the origin, and obtain the following

expression for the new trial point:

— (A.14)

If points are found above the root as well, we calculate the new trial

point by the current values of (xl, yl) and (x2 y2) as follows:

?

X =X+ -5 (yO - yl) (A.15)

We have described the linear-interpolating method, which is convergent
for any monotonic function, In our case, however, we found the con-
vergence very slow. In many instances we were not able to obtain results
with 0.1 percent accuracy less than 40 iteration steps. We found a very
efficient way to speed up the convergence of this method considerably.
Before obtaining the points (xl, yl) or (xz, yz) from the
current values of xtry and ytry’ we store y1 or y2 respectively by
setting its value equal to y3. This means that if the trial point is

above the root, we set Vg = Yy and then perform the substitutions
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= = N If t i i i
X, xtry’ Yo ytry he trial point is below the root, we set

first d proceed tti = = .
y1 irst and p eed as before, setting x1 xtry and y1 ytry

In the first case the expression (y3 - yz)/(y3 - yo) is a measure of

«
1}

the speed of the convergence of the linear-interpolating method. When
yz——which is the last trial value--is near to the value of Yor the
linear interpolation is successful and the value of the above expression
is near unity. When y2 is near to y3-—which is the trial point of
the succeeding step--the linear-interpolating method does not converge
rapidly and the value of the above expression is near to zero.
Consequently, when the value of (y3 - yz)/(y3 - yo) is near unity, we
want to proceed with linear interpolation; when its value is zero, we
halve the interval to find the new trial value of x. The following

expression performs both functions:

e W R W U T W I B (v - v.) Y3 = Y2
= 5 — — —
try Yyq = ¥y 1y, -y, 70 1 Y3 = Yo

(A.16)

After simplification Eq. (A.lG) becomes

1 (y5 = vy)(2yy = v; = v,)(x, = %))
ey T2 | F1 T %t CAEEAICAEER) (a.17)
y Vg Yo/\¥Yo Yy
In the second case the trial point is below the root. The roles of Yo
and yl are interchanged and the important factor is (y3 - yl)/(y3 - yo).
If we can use the interpolating formula (i.e., if the points above the
root have already been obtained in the preceding steps), then the formula

for the new xtry is similar to that of Eq. (A.17).

(v, = v )2y, =y, =y, )(x, - x.)
x4 ox s 3 1 0 1 2/\%g 1

12 (yg - vg)(yy - vy) (A.28)

»
1l
[

try

If the extrapolation formula is used, we can speed up convergence by

multiplying Eq. (A.14) with the factor (y3 - yo)/(y3 - yl). This
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factor becomes large if the extrapolating procedure does not converge

rapidly, but it is unity if the convergence is good.

We have covered all the possible cases of this iterating

procedure except the first two steps, in which a value to y3 is not

yet assigned. In this case we use the interpolating or the extrapolat-

ing procedure without the indicated correction for the first two steps.

The described procedure converged very rapidly in all the

examples that were calculated. With the requirement of O,l-percent

accuracy, six iteration steps were sufficient in average.
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APPENDIX B. BALGOL TEXT OF THE COMPUTER PROGRAM FOR THE DC STATES

The complete text of the described computer program in symbolic
language is reproduced on pages 99 through 106, The program was

written in BALGOL, which is the Stanford version of ALGOL 60,
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COMMENT --=-MQOST OF THE IDENTIFIERS USED IN THIS
PROGRAM APPEAR AS SYMBOLS IN THE PAPERe. FOR THEIR
DEFINITION CONSULT THE REPORT
DEFINITION OF NEwW VARIABLES =--

ACURACY = THE PERCENTAGE ERRCR ALLOWED IN THE
CALCULATION OF SEPARATION LENGTH.

ACCY = QelesACURACY .
CSTE = ALPHAELEXP( BETAEETAMIN ) .
CSTI = ALPHAILEXP( BETAlI.( ETA2 - ETAMAX) ) .

CURRENT = CURRENT/AREA FLOWING THROUGH THE DIODE
ERROR = PERCENTAGE ERROR COMITTED IN THE LAST

STEP OF THE ITERATION PROCESS
MRATIO = MASS OF ELECTRONS/MASS OF IONS
NO = NUMBER OF INTERVALS FOR INTEGRATION .
POSMAX = THE DISTANCE BETWEEN THE ION EMITTER

AND THE POSITION OF MAXIMUM POTENTIAL o
POSMIN = THE DISTANCE BETWEEN THE ELECTRCN

EMITTER AND THE POSITION OF

MINIMUM POTENTIAL .

VMAX = THE MAXIMUM PCTENTIAL IN THE DIODE .
VMIN = THE MINIMUM PCTENTIAL IN THE DIODE o $
PROCEDURE GNEG( X ) $
BEGIN
EITHER IF X LEQ 0«0
GNEG() = 1.0 %
OR IF X LSS 2.0 %
GNEG() = 160 + Xol(1leO0+Xe(0e5+Xe(0016666667+Xe(0e0416666

Xe(0e0083333333+04003473606eX)))) = SQRT(X})oe

{0e7522528+Xe(0e30090112+Xe(0e085971748+X0

{0.019104833+Xe(0s003473606+0.00182280384X))
OR IF X LSS 50040 9%

BEGIN
Y = 1407X $
GNEG() = SQRT(X) e(1e1283792+Ye{0e56418957~-Ye (0282094
Ye(0e42314218 — 0e427402624Y)))) %
ENDS
OTHERWISE %
GNEG() = 1¢1283792+SQRT(X) $
RETURN
END GNEG() %
PROCEDURE GPOSI{X) 3
BEGIN
EITHER IF X LEQ 0.0 %
GPOS() = 140 %
OR IF X LEQ 10.0 %
GPOS() = 2e04EXP(X) - GNEGI(X) $
OR I7 X LEQ §8C.0C ¢
GPOS() = 2e06EXP(X) 9
OTHERWISE $
GPOS() = 140%%38 %
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RETURN
END GPOS() 3
COMMENT ~-- THE FOLLOWING FUNCTIONS ARE THE INTEGRANDS
FOR THE THREE REGIONS RESPECTIVELY .
{ SEE EQUATIONS 36« AND 374 ) 3
FUNCTION
REGIONI(ETA} 1e0/SQRT{ CSTICGNEG(BETAI«(ETAMAX-ETA))
CSTEWGPOS(BETAE« (ETA-ETAMIN) ) +GAMMA) §

i

FUNCTION
REGION2(ETA) 1e0/SQRT( CSTIeGNEG(BETAI«(ETAMAX~ETA) )

CSTEGNEG(BETAE{ETA-ETAMIN) ) +GAMMA) %

H

FUNCTION
REGION3(ETA) 1¢0/5QRT( CSTIGPOSI{BETAl«(ETAMAX-ETA))

CSTEGNEG(BETAES(ETA-ETAMIN) }+GAMMA) 3

PROCEDURE INTC N » Ay B$% F() ) %
BEGIN
COMMENT —--- THE INTEGRAL OF F(X) FROM A 7O B IS DIVIDED

INTO N EGUAL INTERVALS « THE CORRECTED
GAUSS'S FORMULA IS USED FOR THE N
INTERVALS %
INTEGER N s K &
H = (B - A)J/N %
SUM = 0 %
FOR K = (1 9 1 o N ) 8
SUM = SUM + 0e15128136e¢(F(A+H«(K=0496898593)) +
FIA+He (K-003101407)1)) +
e69743728eF (A+He (K=0e5)) &
INT() = HeSUM %
RETURN
END INT() %
SUBROUTINE CORRECT %
BEGIN
EITHER IF YTRY LSS YO &
BEGIN
Y3 Y1 %
Y1 YTRY &
X1 = XTRY %
EITHER IF ( Y2 EQL 040 ) AND ( Y2 EQL 0e0 ) $
XTRY = XleYO/Y1l ®
OR IF Y2 EQL 0.0 &
XTRY = ( X1leYOe(YO=Y3))/ ( Ylef{YLl-Y3)) %
OTHERWISE $
XTRY = Qo5 (X1+X2+((X2=-X1)e(Y3-Y1)ow

Hon

(240eY0-Y1=Y2))/7(({Y3=-Y0)alY2-Y1))) 3
END %
OR IF YTRY GTR YO %
BEGIN
Y3 = Y2 %
Y2 = YTRY %
X2 = XTRY %

EITHER IF Y3 EQL 0.0 %
XTRY = X1 4#((Y0O=-Y1l)e(X2-X1))/(Y2-Y1) $
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OTHERWISE $
XTRY = 0e5e(X1+X2+((X2=X1)e(Y3-Y2)e
(2e¢0eY0=Y1-Y2))/{(Y3=Y0)elY2-Y1))) $
END $
OTHERWISE $
RETURN $
RETURN
END CCRRECT s
COMMENT ~—- THE CONTRCL DATA .
NO = NUMBER OF SUBDIVISIONS IN THE INTEGRAL
PROCEDURE .
ACURACY = MAXIMUM PERCENTAGE ERRCR IN THE
CALCULATED SEPARATION LENGTH WHEN
COMPARED TO THE GIVEN LENGTH, XIZ2e
ACCYy = MAXIMUM ERROR FOR THE ITERATING

STEPS WHICH DETERMINE ETATMIN 3
INTEGER NO $

READ (%% CONTROL ) %
INPUT CONTROL( NO s ACURACY ) 9
ACCY = QeleACURACY %
STARTeo
READ (%% DATA) %
INPUT DATA( JSESJSTsTESTIsV2sDsyMRATIC ) $
WRITE (%% INOUT,FMOUT ) %
QUTPUT INOUT(JSEsJSIsTESTIsV2sDeMRATIC ) $
FORMAT FMOUT(B20»*THE PARAMETERS OF THE DIODE *,w2ys
B7o%*JSE*9yB11oy*¥JSI*yB124y¥TE¥3B124¥TI*yB12y%*V2%,

B139*D*sB11y*¥ME/MI*,12s TF1l4e5sW2 ) $
NORMALIZE ..
COMMENT —--- THE NCRMALIZED PARAMETERS OF THE

DIODE ARE CALCULATED %

ALPHAE = JSE/( JSE + JSIeSQRT(TI/(TELMRATIO))) $
ALPHAT = 1.0 - ALPHAE 3

BETAE = TI/(TI1+ALPHAE + TEJALPHAL) %

BETAI = BETAE.TE/TI %

ETA2 = 116054C.V2/( BETAE.TE ) %
XI2 = 9419286%#%5,DeSQRT(JSESQRT(ITE)+JST«SQRT(TI/
MRATIO))/( BETAE.TE) 3
TRANSITIONeo

COMMENT =--- EQU. 46 AND 47 ARE CALCULATED FIRST %
QE = ALPHAE.( GNEG(BETAE.ETAZ2) = 1.0 ) $
QI = ALPHAl.{ GNEG(BETAI.ETA2) = 1.0 )} $
IF ETA2 EQL 0.0 $
BEGIN
COMMENT --- TAKE THE LIMIT &

QE = ALPHAE.3ETAE S

= AILPUAT._RFTAT &

~T
Wl AL AL sco T AL

END $
EITHER IF QE GTR QI 3
BEGIN
COMMENT --- THE DIODE IS ELECTRON-RICH %

XIAC = XIAD = XICD = 0.0 %
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GAMMAMIN = =~ ALPHAE - ALPHAI.GNEG( BETAI.ETA2 ) $
GAMMA = GAMMAMIN 3
IF ETAZ EQL 00 $
GAMMA = 0.0 §
ETAMIN = 0.0 %
ETAMAX = ETA2 $
CSTE = ALPHAE %
CS5T1 = ALPHAL %
XIAB = INT( NO » Ce0
EITHER IF ALPHAL EQL
BEGIN
XI1BD = leleXI2 %
ETATMIN = ETA2 3
END %
OTHERWISE %
BEGIN
ETAT = ETAZ2 &
IF { BETAEETAT LSS 1e0%%=7 )
OR ( BETAIETAT LSS le0%%-7 ) %
ETAT = 1.0%%=6/BETAE + 1.0%%-6/BETAl %
ETATRY = ETAT + 2406ACCYS(ETAT - ETA2) %
UNTIL ABS(ETATRY - ETAT) LSS ACCYS(ETAT - ETAZ2) 3
BEGIN
COMMENT ~~== SOLVING FOR ETAT BY ITERATION 3%
ETATRY = ETAT $
ETAT = ETA2 + LOG((ALPHAE.( GNEG( BETAE.

ETA2 3% REGION2() ) %
o 3

T
Ce

ETATRY) = 10))/(ALPHATL«( GNEG(
BETAISETATRY ) = 1.0 )))/BETAE %
END 8
ETATMIN = ETAT %
ETAMAX = ETA2 3
ETAMIN = ETA2 - ETAT §
CSTE = ALPHAESEXP(BETAECETAMIN) §
GAMMA = = MIN( (CSTE + CSTIGNEG( BETAIETAT)) »
(CSTESONEG(BETAELETAT) + CSTI 1) %
XIMIN = ~ INT( NO s 0.0 s ETAMIN $5 REGIONI1{) ) 3
XIBD = XIMIN + INT(NO,ETAMINLETA2 $3% REGIONZ2{) ) 9
END $
END $
OR IF QI GTR QE &
BEGIN
COMMENT --- THE DIODE IS ION-RICH $
XIAB = XIBD = XIAD = 00 %
GAMMAMIN = - ALPHAE.GNEG( BETAE.ETA2) - ALPHAL 3

GAMMA = GAMMAMIN %
IF ETA2 EQL 0.0 %

GAMMA = 0.0 §
ETAMIN = Cs0 ®
ETAMAX = ETAZ %
CSTE = ALPHAE $
CSTI = ALPHAL $

XIAC = INT( NC » 0e0 s ETA2 3% REGION2() ) 9
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EITHER IF ALPHAE EQL 0.0 $
BEGIN
XICD = leleXI2 3
ETATMIN = ETA2 3
END 8
OTHERWISE $
BEGIN
ETAT = ETA2 %
IF ( BETAECETAT LSS 1le0%¥-7 )
OR ( BETATCETAT LSS leO*%=7 ) %
ETAT = 1.0%*¥-6/BETAE + leO*%#-6/BETAI $
ETATRY = ETAT + 2.0.ACCYS(ETAT - ETA2) ¢
UNTIL ABS(ETATRY - ETAT) LSS ACCYL(ETAT -~ ETA2) %
BEGIN
COMMENT ---— SOLVING FOR ETAT By ITERATION 3
ETATRY = ETAT $
ETAT = ETA2 + LOG((ALPHAI«( GNEG( BETAI.
ETATRY) — 10))/( ALPHAES! GNEGH
BETAELETATRY ) - 10 }))/BETAL 3

END %
ETATMIN = ETAT §$
ETAMAX = ETAT $
ETAMIN = 2.0 %
CSTI = ALPHAISEXP( BETAI.( ETA2 - ETAMAX 1)) &
GAMMA = = MIN( (CSTE + CSTIGNEG( BLETAILETAT)) »
(CSTECGNEG(3ETAECETAT) + CSTI 1) %
XIMAX = = INT( NOsETAMAXsETA2 %% REGION3() ) §
XICD = XIMAX + INT({ NO»Q0«0sETAMAX %% REGIONZ{) ) %
END 9
END $
OTHERWISE $
BEGIN
COMMENT =--- THE DIODE IS MNEUTRAL $
XIAB = XIBD = XIAC = XICD = 0.0 %
GAMMAMIN = - ALPHAE - ALPHAIT«GNEG( cETAI.ETAZ ) 3

GAMMA = GAMMAMIN 3
IF ETA2 EQL 0.0 %
GAMMA = 0.0 %
ETAMIN = C.0C 3
ETAMAX = ETAZ2 %
ETATMIN = ETAZ2 S
CSTE = ALPHAE $
CSTI = ALPHALI 3
XIAD = INT( NOsDe0sETA2 $3 REGION2() ) 8
END 9
WRITE ($% OUTTRANS » F
OUTPUT DUTTRANS { XI
FORMAT
FTRANS( B1l0Os*THE NORMALIZED TRANSITICN LENGTHS¥*,
W4 eB8 s*¥XIAB*3BLl1e¥XIACH*,B11+*XIBD*4B11,
¥XICD*9BL1y*¥XIAD* s W4 95F15459W2

TR
AR

=]

ANS ) %
sXIAC:XIBDXTCNeXIADXI2) &

- 103 - SEL-64-012




Bl10s#THE NORMALIZED SEPARATION LENGTH*,

¥ XI2 = %y F20e5 sW2 » W2 ) 8
COMPARE .
COMMENT -=- THE NEXT STEP IS THE DETERMINATION OF THE
TYPE OF THE POTENTIAL SOLUTION %
XTAMAX = XIAB + XIAC + XIAD 3
XIDMIN = XIBD + XICD + XIAD %

EITHER IF XI2 LCQ XIAMAX $
BEGIN
WRITE (%% LINEA ) &
FORMAT LINEA(320s%THE SOLUTION IS TYPE A*4W2 ) 9
GO TO TYPEA 5
END §
OR IF XI2 GEQ XIDMIN ¢
BEGIN
WRITE (%% LINED ) ¢
FORMAT LINED(H20s*THE SOLUTION [S TYPE D #,wW2) 3
GO TO TYPED %
END %
OR IF XICD EQL 0.0 9
BEGIN
WRITE (%% LINEDR ) %
FORMAT LINEB(R20s*THE SCLUUTION IS TYPE B¥*,w2) %
GO TO TYPEB %
ENDC ¢
OTHERWISE $
BEGIN
WRITE (%% LINEC ) ¢
FORMAT LINEC(B20,s*THE SOLUTION IS TYPE C*,W2)
GO TO TYPEC %
END ¢
COMMENT =--- THE CALCULATION CF THE INSIDE PARAMETERS
FOLLOWSs THE LABELS CORRESPOND TO THE FOUR
TYPES OF POTENTIAL FUNCTIONS o TO TEST THE
ITERATING PROCEDURE 9 THE R=SULTS CF THE
ITERATING STEPS ARE LISTED ¢
FORMAT ITHEAD (BlOs*DURING THE ITERATING PROCEDURE,
* THE FOLLOWING STEPS WERE TAKEN¥*,W2)3
OUTPUT ITEROUT ( YTRY 4, YO ) 3

(23]

FORMAT FMITER( B30s*¥THE TRIAL VALUE*4810y
# THE SCOLUTION #4W 4,RB30,F1345,812,
Fl13e59W ) %

TYPEA««

ETAMIN = 0.0 %

ETAMAX = ETA2 %

XIMIN = Ce0 &

XIMAX = Ce0 9

CSTE = ALPHAE %

CSTI = ALPHAI %

YO = XI2 %

XTRY = (XI2#2 )/( (XI12 - XIAMAX)*2.SQRT(ETA2) ) 9

X1 = X2 = Y1 = Y2 = Y3 = 00 $

ERROR = leleACURACYeXI12 %
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WRITE

BEGIN
GAMMA

{

$% ITHEAD) $
UNTIL ERROR LEQ ACURACY.XI2 $

YTRY =

ERROR
WRITE

(

1.0/XTRY + GAMMAMIN %

INT( NO
ABS( Y
$% ITE

ENTER CORRECT %

END %

GO TO FINAL %

TYPEBeo

ETAMAX = ETAZ %
CSTI = ALPHAI %
XIMAX = 0.0 §$
YO = XI2 - XIAMAX %
XTRY = ETATMIN - ETAZ %

IF XTRY EQL 0.0 %
LOG( 1.

XTRY =
X1 = X2 = Y1
ERROR = 1414ACURACYsXI2 3
$% ITHE
UNTIL ERROR LEQ ACURACY.XI2 %

WRITE

BEGIN

{

ETAMIN

CSTE
GAMMA
XIMIN
YTRY

ERROR
WRITE

= Y2 =

= - XTR

s0e0sETA2 % REGION2() ) $
TRY - XI2 ) %
ROUT sFMITER ) &

1 + XI2 ) /7 0e5.BETAE &
Y3 = 0.0 3

AD) %

Y $

ALPHAESEXP( BETAESETAMIN ) %

(

~ CSTE = CSTIGNEG(BETAI«(ETA2-ETAMIN))

-INT(
XIMIN =

NOsQOeQsETAMIN $% REGION1()
XIAMAX +

)

INT{NO,ETAMINSETA2 3% REGION2()

ABS(
$% ITE

ENTER CORRECT $

END %

GO TO FINAL %

TYPECae

ETAMIN = 040 %
CSTE = ALPHAE %
XIMIN = 0.0 %
YO = XI2 - XIAMAX %
XTRY = ETATMIN - ETAZ %

IF XTRY EQL Q40 §

YTRY + XIAMAX - XxI12 )} %
ROUT$FMITER ) &

XTRY = LOG( 1lel + XI12 ) / 0e5.BETAI $
X1 = X2 = Y1 = Y2 = Y3 = 0.0 &
ERROR = 141+ACURACY«XIZ2 $
WRITE( $% ITHEAD) $
UNTIL ERROR LEQ ACURACY.XI12 %
BEGIN
ETAMAX = XTRY + ETA2 §
CSTI = ALPHAI.EXP( -BETAI.XTRY ) %
GAMMA = - CSTI = CSTEGNEG( BETAE.ETAMAX
XIMAX = —~INT( NOJETAMAXsETA2 %% REGION3()
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YTRY = XIMAX - XIAMAX +
INT(NOyQeOsETAMAX $3 REGION2() ) $
ERROR = ABS( YTRY + XIAMAX - XxI12 ) %
WRITE ( 3% ITEROQUT,FMITER ) 3 -
ENTER CORRECT $

END $
GO TO FINAL 3
TYPEDs

YO = XI2 - XIDMIN %

XTRY = LOG( 1le1 + YO ) &

X1 = X2 = Y1 = Y2 = v3 =

ERROR = 1elsACURACYWXI12 3
WRITE( 3% ITHEAD) $

UNTIL ERROR LEQ ACURACY.XI2 $

0«0 9

BEGIN
ETAT = ETATMIN + XTRY &
ETAMAX = ( BETAESETAT+BETAIETA2-LOG( (ALPHAE«(
GNEG(BETAE«ETAT)=-1e0))/{ALPHAT « (GNEG(
BETATETAT)-1401) ))/(BETAI + BETAE) $

ETAMIN = ETAMAX - ETAT %
CSTE = ALPHAELEXP( BETAESLTAMIN ) §
CSTI = ALPHATSEXP( BETAI(ETA2 - ETAMAX) )
GAMMA = MIN((CSTE+CSTI «GNEG(BETAT«ZTAT))
(CSTEGNEG(BETAESETAT)I+CSTI) )
XIMIN =INT( NOsQ«QsETAMIN $% REGIONI1IC() ) &
XIMAX =INT( NOSETAMAXETA2 %% REGION3() ) $
YTRY = XIMIN + XIMAX - XIDMIN +
INT( NOYETAMINSETAMAX %% REGIONZ2() ) %
ERROR = ABS( YTRY + XIDMIN - XI2 ) %
WRITE ( $% ITEROUT,,FMITCR ) &
ENTER CORRECT %
END $
GO TC FINAL $
FINALeo
COMMENT ---= THE DESIRED OUTPUT DATA ARE CALCULATED .
HERE WE CALCULATE THE POTENTIAL MINIMUM AND
MAXIMUM » THEIR POSITION s AND THE CURRENT
DENSITY IN THE DIODE %
VMIN ETAMINCBETAE«TE/116050 3
VMAX = ETAMAX.OFTAE.TE/11605.0 3

$
’

$

nn

POSMIN = XIMIND/XI2 %
POSMAX = XIMAX«D/XI2 %
CURRENT = JSESEXP( BETAELETAMIN ) +
JSTEXP( BETAI«( ETA2 - ETAMAX ) }
WRITE ( $% RESHEAD ) %

FORMAT RESHEAD ( W29B20s*THE CALCULATED RESULTSH*,
¥ ARE THE FOLLCWING*,w2 ) %
WRITE ( $% RESULTsFMRESULT ) %

7

QUTPUT RESULT(VMINyPCSMINsVMAX 9y POSMAX s CURRENT ) %

FORMAT FMRESULT(B5s#POTeMINIMUM (VOLTS) #*y
*X eMINIMUM (CM) POT«MAXIMUM (VOLTS) *y
*X e MAXTMUM (CM) J/DIODE (AMP/SQCM)* 5 W2
5F20e5 sW1 )} 3

GO TO START &
FINISH 3
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APPENDIX C. FINDING THE TRANSITION LENGTH
OF ANY OPPOSITE-STREAM DIODE

The seven diagrams presented on pages 107 through 110 give the
transition length ¢
min
These variables and §2

as a function of the variables Q, B, nz.

are determined from the parameters of the

diode. From Q, B, nz, with the help of the following diagrams, the

value of éD
min
is still less than the ratio gz/gD W
m

can be found.,  The largest odd-integer number, which

is the maximum number of half-

n
periods that a periodic solution can contain in the diode.
If §2/§D < 3, no periodic solution is possible. For £ > 1.0, the
min
parameters 1.0/8 and 1.0/¢ are used in place of B and O in order
¢ .
o find §D e
min
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APPENDIX D. COMPUTER PROGRAM FOR THE SIMULATION OF THE OPPOSITE-
STREAM PLASMA DIODE

The basic principles in the simulation of the opposite-stream
plasma diode by a computer were discussed in Chapter V. We are concerned
here with incorporating these basic procedures into an accurate and
fast computer program written specifically for the IBM 7090 computer,
It is assumed that the reader is familiar with the facilities of this
computer and with binary-integer arithmetic in general.

We used physical quantities in Chapter V to describe the computer
model of a one-dimensional plasma. In order to deal with this problem
on the computer it is necessary to normalize these quantities. The
symbols in the following normalization procedure refer to the dc para-
meters of the diode defined in Chapter III and to the parameters of the

computer program discussed in Chapter V,

1. The Normalization Procedure

For their easier identification, the variables and the constants
of the computer program will be represented by capitalized words.,
Naturally, these quantities are dimensionless.

Position in the diode (POS) is measured from the electron emitter
(left boundary plane), it is represented by an integer, and is normalized
in such a manner that the position at the right boundary plane is 234.

The relation between POS and the real position in the diode (x) is

given by:

POS = 2

(p.1)

‘With the characteristic temperature of the diode T, a characteristic

velocity v is defined bv the following relation:

- 2kT
V=== (D.2)
e
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where k is Boltzmann's constant and me is the mass of the electrons.
Time is normalized by this velocity and the characteristic Debye length
of the diode, A. The relation between the normalized time (TAU) and

real time t is then:

TAU =—t (D.3)

y||<|

Normalized velocity in the computer (VEL) is defined by the first

A POS
A TAU
ing Eqs. (D.1) and (D.3) into this relation, we get the following

difference of position and of time, i.e., by VEL = Substitut-

equation between normalized and real velocities:

34

[V)

VEL = (D.4)

<1<

U

2

where Vv represents velocity in physical units.
We showed in Chapter V that the electron sheels are injected
according to the distribution law

2T \ =

el 2
v = /-1
Oe m og R

e

where R is a random variable uniformly distributed in the unit
interval. Consequently, the normalized injected velocities of the

electron sheets (VELOE) follow the distribution law:
2
VELOE = ——17::; J/- log R (D.5)

The injected velocities of the ion sheets in normalized form

(VELOI) are distributed similarly as
234 m,
VELOI = —=——1[-= /- Tog R (D.6)
E, VB i

where R is again a random variable uniformly distributed in the unit

interval.
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The charge-to-mass ratio of an electron sheet is normalized to
unity in our computer ﬁrogram. This means that the acceleration of
the electron sheet (ACCE) is numerically equal to the negative of
the electric field. The normalized value of the electric field will
be represented by EFLD. In mks units the acceleration of an electron

sheet (ae) is given by the expression:

e
a = -—E (D.7)
e

. . -19 .
where e 1is the electronic charge, 1.6 x 10 coulombs and E is
the electric field in mks units., Since acceleration is the first
difference of velocity divided by the first difference of time in both
the physical and the normalized systems, an expression between the
normalized electric field and the real electric field (E) can be

derived, yielding the expression

2345\_e

EFLD = =
£, (v) m_

E (D.8)

The electric field that is due to the externally applied potential

(Vz) is E and is given by Eq. (66). This quantity can be expressed

2
in the normalized form (EFLD2) in terms of nz as follows

533
EFLD2 = - —5 1, (p.9)

2

The contribution to the electric field of the sheets in the diode
(El) can be expressed in normalized form if it is known how much change
occurs in the normalized electric field when a sheet is crossed. The

change in the actual field (AE) is

AE = £ (p.10)
€0

where g is equal to the coulombs-per-area surface charge that a sheet

represents. This factor, ¢, is a function of the number of electron
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sheets injected per second. This electron-sheet injection rate is a
parameter of the computer diode and it is more convenient to represent
it by the number of electron sheets that are injected during a unit
normalized time., We call this parameter Pe’ or GMME, The saturation
current density of the electron emitter (Jse) is equal to the product

of ¢ and the number of electron sheets injected per second. Chang-

ing the time scale to normalized time and using Eq. (D.lO) to express

o, we obtain Jse in the following form:

e AE (GMME) (p.11)
se 0

[
I}
>1 )<l

In Eq. (15), JSe is given by a different expression, After introduc-
tion of the characteristic constants of the diode (N,T) into this

expression, it becomes:

- XNe KT (p.12)

J
se 27T m
ae ,VBe e

The right-hand sides of Egs. (D.12) and (D.11) are equated and AE is
expressed as a function of the dc parameters of the diode and of GMME,
The parameter AE is the change in the electric field that we were
looking for. This change can be expressed in a normalized form (DEFD)

by using Eq. (D.S). The resulting expression is

532
DEFD = (D.13)

NE: ae‘JE;‘GMME

Since the ion sheets are carrying the same amount of surface

charge as the electron sheets (with a different sign, naturally), the
injection rate of the ion sheets depends on the injection rate of the
electron sheets through the dc parameters of the diode. If we call
the number of injected ion sheets per unit normalized time GMMI, it is
given by the relation:

a, JpB. m

GMMI = GMME — (D.14)
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We have expressed all the constants that are necessary for the
calculation of the characteristics of the computer diode in terms of
the normalized dc parameters of the diode. The size of the time step
AT, or DTAU, was not included amoung these constants because it is an
independent parameter of the computer model and does not influence
the constants., The constants and parameters of the diode are collected

in Table 3 for reference.

2, Variables of the Computer Program

Strictly speaking, the variables of the computer program are only
the positions and the previous change of positions of the sheets. All
other quantities in the diode are determined from these variables, It
is convenient, however, to select still other quantities in the program
and consider them also as variables partly because of their physical
significance (potential, current, etc.) and partly because of their
roles in computing the characteristics of the diode. Most of these
variables are collected into arrays. These arrays will be identified
by capitalized words, and lower case subscripts will show their particular
elements,

The positions and the previous changes in the positions of the
sheets are placed into two arrays (POSn, DPOSn). The sign of POSn
shows whether the nth elements of POSn and DPOSn arrays belong
to an electron sheet (POSn < 0) or to an ion sheet (POSn > 0). Place
is reserved in the computer's memory for 10,000 elements of both arrays.

It was shown in Chapter V that it is sufficient to record the
values of the electric field only at prescribed points in the diode.
These points are the midpoints of the segments which divide the diode
space into 1024 equal intervals. In order to identify them, these
scgments are numhered starting—--for reasons that will be clear later--
with the number O. Hence, the segment that is nearest to the electron
emitter is signified by the number O, the next segment to the right
corresponds to number 1, and so forth. The last segment, i.e., the
segment nearest to the ion emitter, receives the number 1023. The
values of the electric field at the midpoints of these segments then

can be collected into a field array (EFLD ) whose index number runs

k
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TABLE 4., CONSTANTS AND PARAMETERS OF THE COMPUTER-SIMULATED DIODE

Normalized dc parameters of

m

. e
the diode a, B, §2’ 7]2, m—
i
Parameters of the computer model DTAU, GMME
Resulting normalized constants
of the computer diode:
. 34
Length of the diode 2
. aiV Bi me
Injection rate of ion sheets GMMI = —— — GMME
ae‘/Be i

Injection velocities of
electron sheets

VELOE 2 v - log R

Injection velocities of
ion sheets

I

VELOI = ——— |2 /~Tog R

Electric field due to applied 33
potential EFLD2 = - —5 1]
£ 2 '2
2
Acceleration of an electron
sheet ACCE = - EFLD
Me
Acceleration of an ion sheet ACCI = — EFLD
i
Change of electric field 232
across a sheet DEFD =
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from O to 1023, Actually, it is more convenient to keep a record of
the changes in DPOSn of the sheets during a time step (these quantities
are proportional to the field values). For the electron sheets, the
field values are multiplied by ~(Aﬂ)2; for the ion sheets the multiply-~
ing factor is (me/mi)' (Aﬁ)z. Two arrays with 1024 elements are needed

to store the resulting quantities (DDPE DDPIk). the subscripts of

’
these two arrays take the integer valueskof 0,1,2,,..,1023,

The potential as a function of distance is calculated from the
field by integration. Since the field varies linearly in each segment,
this integration becomes a simple summation--~though this introduces a
slight inconsistency since the values of the potential are given at
the boundary and not at the midpoints of the segments. Consequently,
the potential array (POTk) has an index that is running from 0O to
1023 also, but the values of the potential refer to the right boundary
points of the segments that the index numbers signify. The values of
the potential are given in their dc normalized form, hence POT1023 is
always equal to nz.

There are a few single variables in the program, i.e., the current
through the diode (CURR), the total number of sheets in the diode
(NTOT), and the number of jion and electron sheets that leave the diode
during a particular time step (ILEFT,ELEFT) at the plane of the
electron emitter.

Naturally, all the variables are functions of the normalized time,
or what is more appropriate in the computer program, functions of the
number of time steps (TCOUNT) counted from some reference time. The

methods of computing these variables are discussed in the following

Sections in the order that they appear on Fig. 12,

3. Moving ihe Sheets During a Time Step

It is assumed that we know the state of the diode at the end of the
time step TCOUNT, i.e., the positions and the previous changes in the
positions of the sheets are given, and the elements of DDPEk and DDPIk
have also been determined according to the distribution of the sheets
in the diode (see Sec, 5). We want to calculate the positions of the

sheets at the end of the next time step and then increase TCOUNT by one.
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34
If POSn(new) < -2 or > 0, it has left the diode space at the ion

emitter or at the electron emitter respectively and the position of
the sheet is set equal to zero. The value of ELEFT is set equal to
the total number of electron sheets that leave the diode at the electron

emitter during this time step.

4, Injecting New Sheets

The distribution laws for the injected velocities of the ion and
electron sheets are given in Table 3. According to these expressions
the square root of the natural logarithm of a number (R) has to be
calculated for each injected sheet. This number R 1is given as a

35
35-bit binary number, hence it could have any one of the 2 -1

values that are between O and 235. Accordingly, there are 235 -1
possible velocity values one of which is assigned to an entering sheet.
Since the computer model can handle only 10,000 sheets at a time, it is
not necessary to keep such a large variety of velocity classes. The
computer results are hardly affected if the number of possible initial
velocities is limited to 210 = 1024, for example, in which case the
possible velocity values can be calculated at the beginning of the
computations and stored for future reference.

We used the latter method, for it saved us considerable computer
time. The uniformly distributed random number R was calculated as
before (see Chapter V). It was considered as an integer and was shifted
right 25 places. The resulting integer, R', could have values of
0,1,2,...,1023, These values occurred in a random manner, and each was
equally probable., The number R' was used, then, to indicate the
element of an array in which the calculated velocity values were stored.

In the actual calculations we were not interested in the initial
velocities of the injected sheets directly, but rather in the position
and previous change in the position of each injected sheet. Equation
(59) in Chapter V shows how to calculate these quantities from the
initial velocity of the injected sheet and from the acceleration that
acts on the sheet in the neighborhood of the emitter. It is convenient

to calculate the initial changes in the positions of the sheets INDPE

for the electrons and INDPI for the ions. These changes are given

SEL-64-012 - 118 -




For these calculations we take the positions of the sheets (POSn) one

by one and test each for sign.

If POSn > 0, this element of the array represents an ion sheet.
The value of the position, an integer number between O and 234,
determines the segment to which this sheet belongs. The segment number
is determined by shifting POSn to the right with 24 places, The
resulting integer (we call it KIND) can have values of 0,1,2,...,1023
and corresponds to the segment number of the sheet. Hence, DDPIKIND
gives the change in the value of DPOSn for this time step. The new

position and the change in the position of this sheet are

DPOSn(new) DPOSn(old) + DDPI

KIND
(D.15)

POS _(new) = POS (old) + DPOS (new)
where KIND is the integer number that results by shifting right
POSn(old) 24 places. The new position of the ion sheet is tested to
determine whether it is still located in the diode space. If
POSn(new) > 234, the sheet has left the diode at the ion emitter; if
POSn(new) < 0, it has passed the plane of the electron emitter. In
both of these cases the position of the sheet is set equal to zero,
hence it is ignored until the position of a new sheet is placed in
this element of the array during the injection of new sheets. The
value of ILEFT is set equal to the total number of ion sheets that
leave the diode space at the electron emitter during this time step.
If POSn < 0, corresponding calculations are made for an electron
sheet., The index number KIND is determined from the absolute value
of POSn (which is the actual position of the electron sheet) by the
same shifting operation as before. The new values of DPOSn and POSn

are calculated by the following expressions.

DPOSn(new) = DPOSn(old) + DDPE, ..
(pD.16)

POSn(new) POSn(old) - DPOSn(new)
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simply as the product of the initial velocity of the sheet and the length
of the time step (DTAU).

In order to simulate the half-Maxwellian velocity distribution of
the injected sheets by 1024 values, we have divided the unit interval
into 1024 equal segments and calculated the velocities that corresponded
to the midpoints of these segments. These segments were numbered from
0 to 1023, hence the midpoints of the segments could be represented by
the expression (1/2048 + r/1024) where r was (he segment number.

The corresponding velocity values were multiplied by DTAU and then
stored in two arrays (INDPEr, INDPIr) whose indices also ran from
0 to 1023. The elements of these arrays were calculated by the follow-

ing expressions:

34
_ 277 DTAU ( 1 1 )
INDPEI_ = \/ log 5048 + r 1054

5 VBe

me B
INDPI =/— [-2 1INDPE (D.17)
r mi Bi r

for r = 0,1,2,.,.,1023

Injecting a sheet in the diode started with the calculation of a
number from the random sequence R. The new random number R' was
calculated from R by the shifting operation described above and then
used as the index number for one of the arrays in Eq. (D.17). The
procedure was slightly different for ion and electron sheets.

If an electron sheet was injected, it started at the electron
emitter (POS = 0) with positive velocity and with negative position,
The expressions for the position and change of position of the injected

electron sheet were then:

POS

1 1
- (E INDPER, t35 DDPEO)

(D.18)

DPOS INDPER,
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2
since the term ag (At)®  in Eq. (59) is given simply by the first

element of the DDPEk array.

If an ion sheet was injected, it started at the ion emitter
(POS = 234) with negative velocity and its position had to be counted
from the ion emitter. Consequently, the following expressions were used

for an injected ion sheet.

34 1 1
POS = 2 (2 INDPIRl + 3 DDP11023>

(D.19)

DPOS - INDPIR,

We can see from Eq. (D.18) and Eq. (D.19) that the effect of large
retarding fields at the emitters could return the injected sheets to
their respective emitters. 1In these cases the positions of these
returned sheets were set equal to zero and they were ignored in the
same manner as those which left the diode space during the moving of the

sheets,

5. Calculating the Elements of the Arrays DDPIy and DDPEy

The kth element of the arrays DDPIk and DDPEk are proportional
to the value of the electric field at the midpoint of the kth segment
in the diode. (The segment number k can have values of 0,1,2,...,1023),
The electric field in the diode is determined from the combined effects
of the sheets in the diode and of the applied potential (ﬂz). The
potential nz contributes a constant value (EFLDZ) to the total
electric field, hence the same value is added to the field in each
segment,

The contribution of the sheets to the total electric field (EFLDl)
is determined from the positions of the sheets with the condition

234

EFLD1(POS) d(POS) = O (D.20)
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Since the values of the electric field (EFLle) are given at the

midpoints of the segments and the field is a linear function of position
in each segment (see Fig. llb), the integral of Eq. (D.ZO) becomes a

summation. This gives the condition:

1023

EFLD1 = O (D.21)
S o, o)
k=0

Let us suppose that we know the total change of the electric field
across each segment (TDEFDk). Then the calculation of the values of
EFLD1 at the midpoints of the segments (EFLle) can proceed in two
Steps.

First, we make the assumption that the field is zero at the plane
of the electron emitter (POS = 0). Since we know the change of the
electric field across each segment, the values of the field at the
midpoints can be calculated--although these values will not be equal
to EFLle. In order to use corresponding symbols to those used in
Chapter V, we call this hypothetical field EFLDl', and call its values
at the midpoints EFLDl&. The following expression gives the values
of this field:

o L D.22
EFLD1) = 3 TDEFD, ( )
k-1
1
= TDEFD, + =
EFLD1! 22 4 *+ 3 TDEFD_
£=0

It was shown in Chapter V that EFLD1' and EFLDl1 differ only
by a constant and that this constant is equal to the average value of
the field EFLD1l' over the diode space. Accordingly, the values of
EFLD]l at the midpoints of the segments are as given by the following

relation:
1023
1
= . ' D.23
EFLle EFLD1'\ - Tg57 25 EFLD1; ( )
k=0
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Combining the effects of the sheets and of the applied potential gives
the following relation for the total field in the diode:

EFLD, = EFLD1_+ EFLD2 (D.24)

We showed in Sec., D.2 how the values of DDPIk and DDPEk were
related to the field. Substitution of these relations into Eq. (D.23)

gives the values for the arrays:

m
e 2
DDPI, = E; EFLD_ (DTAU)
(D.23)
2
DDPE, = - EFLD_ (DTAU)

Before showing how the values of TDEFDk are calculated from the
positions of the sheets, let us mention the fact that during the above
calculations we determined the value of TEFLD1l at the electron emitter.
This term is important when we want to calculate the convective current
density in the diode (see next section). During these calculations we
determined the average value of EFLD1l' over the diode space. Since
EFLD1' 1is zero at the electron emitter, and the total field, EFLD, is
equal to EFLD1' + EFLD2 minus the average value of EFLDl' every-
where in the diode, the value of the total field at the electron emitter

EFLD(POS = 0) is given by

1023
EFLD(POS = 0) = - TgEZ :S ELFD1, + EFLD2 (D.24)
k=0

The total change in the electric field across the kth segment
(TDEFDk) is caused by the sheets that are located in this scgment., The
change of electric field across one sheet is given in Table 3. This
change is positive for an ion sheet and negative for an electron sheet.

For calculating the values of TDEFDk the following procedure is used:
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1. First the elements of TDEFD are set equal to zero for all
values of k. Then we take t%e positions of the sheets (POSn)
one by one and test each for sign.

2, If POS_> 0, an ion sheet is represented by this element of
the POSn array. The segment number that corresponds to this
sheet is determined, as before, by shifting POS to the right
by 24 places. The resulting integer, KIND, is the number of
the segment in which this sheet is located. The amount DEFD
is the change in the electric field across one sheet, hence we
add t th

ie current value of TDEFDKIND this amount.

3. 1If POSn < 0, an electron sheet has to be considered. The
index number is determined from the absolute value of POS
(which is the actual position of the electron sheet) and
then the amount DEFD is subtracted from the current value

of TDEFDKIND.

4, After all sheets have been considered, the accumulated change

in the electric field across the kth segment is given by

TDEFD, .
k

~
v

We have described the major loop of the computer program. At every
time step the sheets are moved, new sheets are injected, and the field
is calculated in the diode. After the field has been calculated, variables
of the program are printed out according to what output quantities are

needed. These outputs are discussed in the next section.

6. The Current in the Diode and Other Output Quantities

Current in the diode is normalized to the saturation current. If
the electric field is constant in time, the convection current in the
diode (ICONV) for a particular time step (TCOUNT) is given by the

following expression:

ELEFT - ILEFT - GMME (D.25)
(GMME + GMMI) DTAU

ICONV =

where GMME and GMMI are the electron and ion sheet injection rates
respectively, and the numerator gives the equivalent number of positive
sheets that crossed the plane of the electron emitter from left to right
during the normalized time interval DTAU. If the electric field is
changing in time, its contribution to the convection current has to be
calculated also at the plane of the electron emitter [see Eq. (72)]. Wwe
have already shown that the value of EFLD1l is determined at the plane

of the electron emitter (POS = 0) at each time step, hence the
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contribution of the electric field to the convection current at time

TCOUNT is prdbortional to the term:

EFLD1(POS = O, TCOUNT) - EFLD1(POS = O, TCOUNT - 1)
DTAU

The factor of proportionality can be calculated from the condition that
the convection current is constant in space, and we arrive at the

following expression for the normalized convection current:

1

ICONV(TCOUNT) = g (GMME + GMMI)

ELEFT - ILEFT - GMME

\ EFLD1(POS = O, TCOUNT) - EFLD1(POS = O, TCOUNT - 1)
DEFD

where DEFD is the change in the normalized electric field that occurs
when a sheet is crossed.

We have already shown the procedure for calculating the potential
as a function of position in the diode. The extrema of the potential
function can be found easily by looking for those places where the
electric‘field becomes zero.

These were the output quantities that we considered important for
our problem. Naturally, other quantities--such as the position of the
sheets, their velocity distributions at any point in the diode, or the
charge density along the diode--could also be extracted from the
computer program. These quantities are readily available during the

computer calculations and their discussion would be superfluous here.
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